WG Issam Raïs: Towards Green Exascale Computing Challenges

2016-05-03 – Issam Raïs

Title: Towards Green Exascale Computing Challenges

Speaker: Issam Raïs

Abstract: Exascale is coming. Massively heterogeneous machines with hundreds of thousands of computing nodes and each of these nodes possessing hundreds of cores, bounded to each other by a dedicated and efficient network. On every component composing such a machine, we can spot many techniques to reduce energy consumption while maintaining good computing power. In such a context, this presentation aims at presenting the problematics being tackled in the current thesis.

PDF: presentation

WG Hadrien Croubois: Toward an autonomic approach of workflows distribution on cloud

2016-04-19 Hadrien Croubois

Title: Toward an autonomic approach of workflows distribution on cloud ;

Speaker: Hadrien Croubois

Abstract: Advances in distributed systems technologies require a constant rethinking of previous deployments methods. Development of the Cloud paradigm is symptomatic of a broader tendency toward more dynamicity in the management of tasks and resources. However, the scientific computing still mostly uses old paradigms when deploying complex workflows. Our focus is therefore to propose a solution that will make the link between the needs of user in terms of scientific computation and the features offered by cloud providers. After having modelled both those needs and features, we describe the different mechanisms which are part of what should allow for an autonomous platform dedicated to collaborative scientific computing.

PDF: slides

WG Issam Raïs: An analysis of the feasibility of energy harvesting with thermoelectric generators on petascale and exascale systems

2016-04-16 Issam Raïs

Title: An analysis of the feasibility of energy harvesting with thermoelectric generators on petascale and exascale systems;

Speaker: Issam Raïs

Abstract: The heat induced by computing resources is generally a waste of energy in supercomputers. This is especially true in very large scale supercomputers, where the produced heat has to be compensated with expensive and energy consuming cooling systems. An analysis of the feasibility of energy harvesting with thermoelectric generators on petascale and exascale systems; Energy is a critical point for future supercomputing trends that currently try to achieve exascale, without having its energy consumption reaching an important fraction of a nuclear power plant. Thus, new ways of generating or recovering energy have to be explored. Energy harvesting consists in recovering wasted energy. ThermoElectric Generators (TEGs) aim to recover energy by converting wasted dissipated energy into usable electricity. By combining computing units (CU) and TEGs at very large scale, we spotted a potential way to recover energy from wasted heat generated by computations on supercomputers. In this paper, we study the potential gains in combining TEGs with computational units at petascale and exascale. We present the technology behind TEGs, the study of a typical supercomputer environment, and finally our results concerning binding TEGs and computational units in a petascale and exascale system. With the available technology, we demonstrate that the use of TEGs in a supercomputer environment could be realistic and quickly profitable, and hence have a positive environmental impact.

PDF: Thermoelectricity

WG Romaric Guilier: E-Biothon

2016-03-29 Romaric Guillier

Title: E-Biothon

Speaker: Romaric Guillier. 

Abstract: an experimental platform for BioInformatics; Abstract: The E-Biothon platform is an experimental Cloud platform to help speed up and advance research in biology, health and environment. It is based on a Blue Gene/P system and a web portal that allow members of the bioinformatics community to easily launch their scientific applications. This presentation describes the technical capacities of the platform, the different applications supported and finally a set of user experiences on the platform.

PDF: ebiothon_presentation_avalon

 

Avalon and DIET take part in official french delagation to establish industrial partnerships with India

Daniel Balouek-Thomert’s joint work with Mahindra Ecole Centrale (Hyderabad,India) has been valorized within the NUVEA industrial project, and will take part of the French presidential delegation to visit India on January 24-26th.

Granted by the Raman-Charpak Fellowship, Daniel Balouek-Thomert (Avalon,ENS Lyon / NewGeneration-SR) has visited Mahindra Ecole Centrale (Hyderabad, India) during 3 months (Oct-Dec 2015) to work with Dr. Arya K. Bhattacharya.

In a context of reducing the energy consumption of Clouds and large scale infrastructures while concurrently mitigating the environmental impact and maximizing the economic benefits, we proposed to synergize two state-of-the-art technologies by combining multi-objective evolutionary algorithms with trade-off mechanisms using the DIET Middleware.

Beyond a new collaboration between Mahindra Ecole Centrale and ENS Lyon, the outcome of the project brings an interface to express tradeoffs that allows end-users/customers to perform an efficient selection of resources with respect to a certain quality of service (mainly throughput of computing tasks) and energy consumption.

This research work has been valorized within an industrial project, NUVEA, which is mainly focused on eliminating sub-optimal states at available resources, and consolidating tasks/VMs in a way to optimize the overall power consumption while protecting the resulting SLA/QoS.

The NUVEA project, represented by NewGeneration-SR, is part of the official French presidential delegation headed by F.Hollande to visit India for India National Day on January 24-26th, 2016. This is a great testimony of our fruitful research collaboration, and a showcase to pave the way for an international development of this work.

Avalon and DIET take part in official french delegation to establish industrial partnerships with India

Daniel Balouek-Thomert’s joint work with Mahindra Ecole Centrale (Hyderabad,India) has been valorized within the NUVEA industrial project, and will take part of the French presidential delegation to visit India on January 24-26th.

Granted by the Raman-Charpak Fellowship, Daniel Balouek-Thomert (Avalon,ENS Lyon / NewGeneration-SR) has visited Mahindra Ecole Centrale (Hyderabad, India) during 3 months (Oct-Dec 2015) to work with Dr. Arya K. Bhattacharya.

In a context of reducing the energy consumption of Clouds and large scale infrastructures while concurrently mitigating the environmental impact and maximizing the economic benefits, we proposed to synergize two state-of-the-art technologies by combining multi-objective evolutionary algorithms with trade-off mechanisms using the DIET Middleware.

Beyond a new collaboration between Mahindra Ecole Centrale and ENS Lyon, the outcome of the project brings an interface to express tradeoffs that allows end-users/customers to perform an efficient selection of resources with respect to a certain quality of service (mainly throughput of computing tasks) and energy consumption.

This research work has been valorized within an industrial project, NUVEA, which is mainly focused on eliminating sub-optimal states at available resources, and consolidating tasks/VMs in a way to optimize the overall power consumption while protecting the resulting SLA/QoS.

The NUVEA project, represented by NewGeneration-SR, is part of the official French presidential delegation headed by F.Hollande to visit India for India National Day on January 24-26th, 2016. This is a great testimony of our fruitful research collaboration, and a showcase to pave the way for an international development of this work.

WG Julien Bigot: Gysela5D, Adapting a GYrokinetic SEmi-LAgrangian code for current architectures and towards Exascale

Title : Gysela5D, Adapting a GYrokinetic SEmi-LAgrangian code for current architectures and towards Exascale

Speaker: Julien Bigot

Abstract: In order to design and operates the future reactor for nuclear fusion such as ITER (tokamaks), physicists need to better understand the various types of instabilities that develop in the plasma and impact the confinement of heat. Simulation of Ion Temperature Gradient (ITG) instabilities based on the Vlasov equations require huge amounts of computational power with a discretization of both the spacial and velocity space (6D). The gyrokinetic approximation makes this kind of simulation possible by reducing this to “only” 5D. Up to now, the semi-Lagrangian code Gysela5D has been used to perform large simulations using a few thousands cores (8k to 16k cores typically). These simulations make the hypothesis that electrons are adiabatic but recent advances seem to indicate that some instabilities could only be explained by simulating kinetic electrons. In order to do that, the spacial mesh would have to be refined by a 60³ ratio and time steps by a 60 ratio. Such simulations would require Exascale capable machines. In this talk, I present some challenges identified in order to provide an Exascale-ready code as well as solutions recently implemented and work in progress to tackle these. I especially focus on three such piece of work:

  • memory scalability optimization;
  • I/O optimizations for both checkpoints and result writing;
  • communication patterns optimization for big number of cores (Blue Gene/Q).

I will also present recent results that show that the code scales with good performance up to 1,835,008 threads (the complete Juqueen Blue Gene/Q at Jülich).

PDF: WG_150224_jbigot-gysela

WG Salem Harrache: Reconstructable Software Appliances with Kameleon

Title: Reconstructable Software Appliances with Kameleon

Speaker: Salem Harrache

Abstract: A software appliance builder bundles together an application with its needed middleware and an operating system to allow easy deployment on Infrastructure as a Service (IaaS) providers. These builders have the potential to address a key need in the computer science community: the ability to reproduce an experiment. This talk presents a software appliance builder called Kameleon that automates the construction of complex software appliances targeted at research on operating systems, HPC and distributed computing, Devops etc. It does so by proposing a highly modular description format that encourages shareability and reuse of procedures. Moreover, it provides debugging mechanisms for improving experimenter’s productivity.

PDF: WG_150127_Salem

Inria-Illinois-ANL-BSC-JSC-Riken/AICS Joint Laboratory on Extreme Scale Computing

In June 2014, The University of Illinois at Urbana-Champaign, Inria, the French national computer science institute, Argonne National Laboratory, Barcelona Supercomputing Center, Jülich Supercomputing Centre and the Riken Advanced Institute for Computational Science formed the Joint Laboratory for Extreme Scale Computing, a follow-up of the Inria-Illinois Joint Laboratory for Petascale Computing.

Research areas include:

  • Scientific applications (big compute and big data) that are the drivers of the research in the other topics of the joint-laboratory.
  • Modeling and optimizing numerical libraries, which are at the heart of many scientific applications.
  • Novel programming models and runtime systems, which allow scientific applications to be updated or reimagined to take full advantage of extreme-scale supercomputers.
  • Resilience and Fault-tolerance research, which reduces the negative impact when processors, disk drives, or memory fail in supercomputers that have tens or hundreds of thousands of those components.
  • I/O and visualization, which are important part of parallel execution for numerical silulations and data analytics.
  • HPC Clouds, that may execute a portion of the HPC workload in the near future.

More on the lab website

Start Date: 2014

End date: 2022 years (extended for 4 years in 2019)

Avalon Members: T. Gautier, L. Lefevre, C. Perez

Inria-Illinois-ANL Joint Laboratory for Petascale Computing

From June 2009-June 2014, the University of Illinois at Urbana-Champaign and INRIA, the French national computer science institute, formed the Joint Laboratory for Petascale Computing. The Joint Laboratory is based at Illinois and includes researchers from INRIA, Illinois’ Center for Extreme-Scale Computation, and the National Center for Supercomputing Applications. It focuses on software challenges found in complex high-performance computers.

Early focus areas will include:

  • Modeling and optimizing numerical libraries, which are at the heart of many scientific applications.
  • Fault-tolerance research, which reduces the negative impact when processors, disk drives, or memory fail in supercomputers that have tens or hundreds of thousands of those components.
  • Novel programming models, which allow scientific applications to be updated or reimagined to take full advantage of extreme-scale supercomputers.

More on the lab website