WG – Prof. Rajkumar Buyya: New Frontiers in Cloud Computing for Big Data and Internet-of-Things (IoT) Applications

2018-02-27

Title: New Frontiers in Cloud Computing for Big Data and Internet-of-Things (IoT) Applications

Speaker: Prof. Rajkumar Buyya
Director, Cloud Computing and Distributed Systems (CLOUDS) Lab,
The University of Melbourne, Australia

CEO, Manjrasoft Pvt Ltd, Melbourne, Australia

Abstract: Computing is being transformed to a model consisting of services that are commoditised and delivered in a manner similar to utilities such as water, electricity, gas, and telephony. Several computing paradigms have promised to deliver this utility computing vision. Cloud computing has emerged as one of the buzzwords in the IT industry and turned the vision of “computing utilities” into a reality.  Clouds deliver infrastructure, platform, and software (application) as services, which are made available as subscription-based services in a pay-as-you-go model to consumers. Cloud application platforms need to offer (1) APIs and tools for rapid creation of elastic applications and (2) a runtime system for deployment of applications on geographically distributed computing infrastructure in a seamless manner.
The Internet of Things (IoT) paradigm enables seamless integration of cyber-and-physical worlds and opening up opportunities for creating a new class of applications for domains such as smart cities. The emerging Fog computing is extending Cloud computing paradigm to edge resources for latency-sensitive IoT applications.
This keynote presentation will cover (a) 21st century vision of computing and identifies various IT paradigms promising to deliver the vision of computing utilities; (b) opportunities and challenges for utility and market-oriented Cloud computing, (c) innovative architecture for creating market-oriented and elastic Clouds by harnessing virtualisation technologies; (d) Aneka, a Cloud Application Platform, for rapid development of Cloud/Big Data applications and their deployment on private/public Clouds with resource provisioning driven by SLAs; (e) experimental results on deploying Cloud and Big Data/Internet-of-Things (IoT) applications in engineering, and health care, satellite image processing, and smart cities on elastic Clouds;and (f) directions for delivering our 21st century vision along with pathways for future research in Cloud and Fog computing.

Speaker Bio:  Dr. Rajkumar Buyya is a Redmond Barry Distinguished Professor and Director of the Cloud Computing and Distributed Systems (CLOUDS) Laboratory at the University of Melbourne, Australia. He is also serving as the founding CEO of Manjrasoft, a spin-off company of the University, commercializing its innovations in Cloud Computing. He served as a Future Fellow of the Australian Research Council during 2012-2016. He has authored over 625 publications and seven textbooks including “Mastering Cloud Computing” published by McGraw Hill, China Machine Press, and Morgan Kaufmann for Indian, Chinese and international markets respectively. He also edited several books including “Cloud Computing: Principles and Paradigms” (Wiley Press, USA, Feb 2011). He is one of the highly cited authors in computer science and software engineering worldwide (h-index=114, g-index=245, 67,600+ citations).  Dr. Buyya is recognized as a “Web of Science Highly Cited Researcher” in 2016 and 2017 by Thomson Reuters, a Fellow of IEEE, and Scopus Researcher of the Year 2017 with Excellence in Innovative Research Award by Elsevier for his outstanding contributions to Cloud computing.
Software technologies for Grid and Cloud computing developed under Dr. Buyya’s leadership have gained rapid acceptance and are in use at several academic institutions and commercial enterprises in 40 countries around the world. Dr.  Buyya has led the establishment and development of key community activities, including serving as foundation Chair of the IEEE Technical Committee on Scalable Computing and five IEEE/ACM conferences. These contributions and international research leadership of Dr. Buyya are recognized through the award of “2009 IEEE Medal for Excellence in Scalable Computing” from the IEEE Computer Society TCSC.
Manjrasoft’s Aneka Cloud technology developed under his leadership has received “2010 Frost & Sullivan New Product Innovation Award”. Recently, Dr. Buyya received “Mahatma Gandhi Award” along with Gold Medals for his outstanding and extraordinary achievements in Information Technology field and services rendered to promote greater friendship and India-International cooperation. He served as the founding Editor-in-Chief of the IEEE Transactions on Cloud Computing. He is currently serving as Co-Editor-in-Chief of Journal of Software: Practice and Experience, which was established over 45 years ago. For further information on Dr.Buyya, please visit his cyber home: www.buyya.com

WG – Laércio LIMA PILLA: Current Efforts in Global Scheduling and Fault Tolerance for HPC Systems

2018-01-23

Title: Current Efforts in Global Scheduling and Fault Tolerance for HPC Systems

Speaker: Laércio LIMA PILLA

Abstract: Performance, energy efficiency, and reliability have been important objectives and challenges in current and future computing systems. In this context, our approach has been based on understanding the details of the computing system architecture and the behavior of applications, in order to combine this information, identify issues and propose new solutions. In this presentation, I will discuss our experience with the development of new architecture-aware global scheduling algorithms for multiprocessor and multicomputer systems, and with fault tolerance mechanisms for radiation-induced errors in parallel accelerators. I will also present some future global scheduling plans to handle the inclusion of non-volatile random-access memories (NVRAMs) in computing systems.

WG – Victor Allombert: Programming Multi-BSP Algorithms in ML

2018-01-15

Title: Programming Multi-BSP Algorithms in ML

Speaker: Victor Allombert

Abstract: From personal computers using an increasing number of cores, to supercomputers having millions of computing units, parallel architectures are the current standard. The high performance architectures are usually referenced to as hierarchical, as they are composed from clusters of multi-processors of multi-cores. Programming such architectures is known to be notoriously difficult. Writing parallel programs is, most of the time, difficult for both the algorithmic and the implementation phase. To answer those concerns, many structured models and languages were proposed in order to increase both expressiveness and efficiency. Among other models, Multi-BSP is a bridging model dedicated to hierarchical architecture that ensures efficiency, execution safety, scalability and cost prediction. It is an extension of the well known BSP model that handles flat architectures. We introduce the Multi-ML language, which allows programming Multi-BSP algorithms “à la ML” and thus, guarantees the properties of the Multi-BSP model and the execution safety, thanks to a ml type system. To deal with the multi-level execution model of Multi-ML, we defined formal semantics which describe the valid evaluation of an expression. To ensure the execution safety of Multi-ML programs, we also propose a typing system that preserves replicated coherence. An abstract machine is defined to formally describe the evaluation of a Multi-ML program on a Multi-BSP architecture. An implementation of the language is available as a compilation toolchain. It is thus possible to generate an efficient parallel code from a program written in Multi-ML and execute it on any hierarchical machine.

Inria Project Lab Discovery

Distributed and COoperative management of Virtual Environments autonomousLY

The DISCOVERY initiative aims at exploring a new way of operating Utility Computing (UC) resources.

To accommodate the ever-increasing demand for Utility Computing (UC) resources, while taking into account both energy and economical issues, the current trend consists in building larger and larger data centers in a few strategic locations. Although such an approach enables UC providers to cope with the actual demand while continuing to operate UC resources through centralized software system, it is far from delivering sustainable and efficient UC infrastructures. We claim that a disruptive change in UC infrastructures is required: UC resources should be managed differently, considering locality as a primary concern. To this aim, we propose to leverage any facilities available through the Internet in order to deliver widely distributed UC platforms that can better match the geographical dispersal of users as well as the unending demand. Critical to the emergence of such locality-based UC (LUC) platforms is the availability of appropriate operating mechanisms. We advocate the implementation of a unified system driving the use of resources at an unprecedented scale by turning a complex and diverse infrastructure into a collection of abstracted computing facilities that is both easy to operate and reliable.

Start Date: January 2015

Duration: 4 years

Avalon Members: J. Darrous, G. Fedak, C. Perez

More information on Discovery website

Inria Project Lab C2S@Exa

Computer and Computational Sciences at Exascale INRIA Large Scale Initiative

The C2S@Exa INRIA large-scale initiative is concerned with the development of numerical modeling methodologies that fully exploit the processing capabilities of modern massively parallel architectures in the context of a number of selected applications related to important scientific and technological challenges for the quality and the security of life in our society. Avalon is a core-team member, co-leading Pole 4 on Programming models.

Start Date: 2013

Duration: 4 years

Avalon Members: T. Gautier, C. Perez, J. Richard

More information on C2S@Exa website

PIA ELCI

ELCI is a French software project that brings together academic and industrial partners to design and provide a software environment for the next generation of HPC systems. The principal objective for the project is to facilitate the development of a software environment that meets the demands of the new generation of HPC architectures. This will cover the whole software stack (system and programming environments), numerical solvers and pre/post/co processing software.
ELCI is a French software project that brings together academic and industrial partners to design and provide a software environment for the next generation of HPC systems. The project is funded by the participating partners and by the French FSN “Fond pour la Société Numérique”.

The principal objective for the project is to facilitate the development of a software environment that meets the demands of the new generation of HPC architectures. This will cover the whole software stack (system and programming environments), numerical solvers and pre/post/co processing software.

A co-design approach is employed, that covers the software environment for computer architectures, the requirements of more demanding applications, and is adapted to future hardware architectures (multicore/many core processors, high-speed networks and data storage).

These developments will be validated according to their capacity to deal with the new exascale challenges- larger scalability, higher resiliency, greater security, improved modularity, with better abstraction and interactivity for application cases.

Start Date: September 2014

Duration: 3 years

Avalon Members: T. Gautier, L.Lefevre, C. Perez, I. Rais, J. Richard

More information on the ELCI web site.

LEXISTEMS

LEXISTEMS develops Xact.ai, a solution to provide an universal access to knowledge in Natual Langage (data & data’s structuration limitless).

For organizations, Xact.ai is the most effective way to monetize data assets. Whatever the nature and volume of knowledge bases.

LEXISTEMS’ solutions streamline the use and analysis of natural language in business and personal applications.
A new era is opening. Users are empowered, and organizations leverage the true value of their data assets.

LEXISTEMS and Avalon collaborate on the design and development of NLP algorithms and high-level data structuration.

 

Start Date: September 2016

Duration:

Avalon Members: Marcos Assuncao, Eddy Caron and Thomas Pellisier-Tanon

More information on website: LEXISTEMS

Inria Project Lab HAC-SPECIS

HAC SPECIS: Inria project lab on High-performance Application and Computers: Studying PErformance and Correctness In Simulation (2016-2020) :

The goal of the HAC SPECIS (High-performance Application and Computers: Studying PErformance and Correctness In Simulation) project is to answer  methodological needs of HPC application and runtime developers and to allow to study real HPC systems both from the correctness and performance point of view. To this end, we gather experts from the HPC, formal verification and performance evaluation community. website : http://hacspecis.gforge.inria.fr/

 

Start Date: June 2016

Duration:

Avalon Members: F. Suter, L. Lefevre

CeoE H2020 POP

Summary

Inaugurated October 1, 2015, the new EU H2020 Center of Excellence (CoE) for Performance Optimisation and Productivity (POP) provides performance optimisation and productivity services for academic and industrial codes. European’s leading experts from the High Performance Computing field will help application developers getting a precise understanding of application and system behaviour. This project is supported by the European Commission under H2020 Grant Agreement No. 676553

Established codes, but especially codes never undergone any analysis or performance tuning, may profit from the expertise of the POP services which use latest state-of-the-art tools to detect and locate bottlenecks in applications, suggest possible code improvements, and may even help by Proof-of-Concept experiments and mock-up test for customer codes on their own platforms.

Partners

Barcelona Supercomputing Centre (BSC), High Performance Computing Center Stuttgart of the University of Stuttgart (HLRS), Jülich Supercomputing Centre (JSC), Numerical Algorithm Group (NAG), Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), TERATEC (TERATEC).

Project Information

Start Date: October 2015

Duration: 3 yars

Avalon Members:

Online Resources

More information on http://www.pop-coe.eu

Labex MILYON

Laboratoire d’excellence en mathématiques et informatique fondamentale.

MILYON fédère les communautés mathématiques et informatique de Lyon autour de trois axes : la recherche d’excellence, notamment des domaines à l’interface des deux disciplines ou d’autres sciences ; la formation, avec l’appui à des filières innovantes tournées vers la recherche ; la société, à travers la médiation de la culture scientifique auprès du grand public et le transfert de technologie vers l’industrie.

Il regroupe plus de 350 chercheurs, et trois unités mixtes de recherche de l’Université de Lyon : l’Institut Camille Jordan, le Laboratoire de l’Informatique du Parallélisme et l’Unité de Mathématiques Pures et Appliquées.

Plus d’information sur le site de MILYON.

Start Date:

Duration:

Avalon Members: