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Abstract. A current limitation to component reusability is that com-
ponent models target to describe a deployed assembly and thus bind the
behavior of a component to the data-types it manipulates. This paper
studies the feasibility of supporting genericity within component models,
including component and port types. The proposed approach works by
extending the meta-model of an existing component model. It is applied
to the SCA component model; a working prototype shows its feasibility.

1 Introduction

Component based software engineering is a very interesting approach to increase
code reusability. Component models are used in a variety of domains such as
embedded systems (Fractal [1]), distributed computing (CCM [2], SCA [3]), and
even high performance computing (CCA [4]).

There is however usually a direct mapping between component instances
and execution resources as well as between components and the data-types they
manipulate. This means that a component implementation binds together three
distinct concerns: the behavior of the component, the data-types it manipulates
and the execution resources it is targeted to. Separating those three concerns
would greatly increase reusability as each aspect could be selected independently
to be combined latter. While there are some works on automatic mapping of
components on resources, there are few works on abstracting component models
similarly as what is addressed by generic programming where algorithms and
data-types can be parameters.

This paper presents an attempt to support genericity in component models
in order to validate the feasibility of this idea and evaluate its advantages on
an example. This is achieved by extending an existing component model (SCA)
with concepts to support genericity and by implementing a tool that transforms
applications written in this extended model back to the original one.

The remainder of this paper is organized as follow. Section 2 describes an
example of component that would benefit from the introduction of genericity.
Section 3 analyzes some related works. An approach to introduce genericity is
described in Section 4 and applied to SCA in Section 5. Then, Section 6 evaluates
how this generic SCA can be used to implement the example described earlier
through a prototype. Finally, Section 7 concludes and present some future works.



2 A motivating example: the task farm

Algorithmic skeletons are constructs that describe the structure of recurring
composition patterns [5]. Some skeletons have been identified for the case of
parallel computing, such as the pipeline (computation in stages), the task farm
(embarrassingly parallel computations), the map and reduce (data parallel ap-
ply to all and sum up computations), the loop (determinate and indeterminate
iterative computations) and the divide & conquer skeletons.

As an example, the task farm skeleton /@\
shown in Fig. 1 takes a data-stream as input ®\\é/%

and outputs a processed version of this stream.
The parallelism is obtained by running in par-
allel multiple instances of workers (W in Fig. 1),
each one processing a single piece of data at a
time. A dispatcher (D in Fig. 1) handles the input and chooses the worker for
each piece of data and a collector (C in Fig. 1) reorders the outputs of the workers
to generate the farm output.

Fig.1: The task farm skeleton.

A typical component based implementation of the task farm will wrap each
of the three roles in a component. The farm itself will be a composite containing
instances of these components. To increase the reusability of this composite,
it should be possible to use it for various processing applied to the data, for
various types of data in the stream and for various numbers of workers. It is
thus interesting to let the type of the data stream, the implementation of the
workers as well as their number be parameters of the composite.

When knowledge about the content of the manipulated data or about the
behavior of the workers makes it possible to provide optimized implementations
of the dispatcher or collector it should be possible to use these implementations.
This should however not complexify the usage for cases where the default imple-
mentation is sufficient. It is thus interesting to let the implementations of these
two components be parameter of the composite with some default values.

Hence, the task farm is a good example of component that could benefit from
the support of genericity. Kinds of needed parameters include data-values (the
number of workers), data-type (data stream) and component implementations
(dispatcher, worker and collector), with the possibility to provide default values.

3 Related works

3.1 Languages with support for genericity

Genericity [6] is ubiquitous in object-oriented languages. For example, ADA,
C++, Ct, Eiffel and Java all support it [7]. Classes, methods and in some cases
procedures can accept parameters. Parameters can be data-types or in some
cases data-value constants. A typical usage is to implement type-safe containers
where the type of the contained data is a parameter.



There are two main approaches for handling the validity of parameter values.
In some languages such as JAVA, explicit constraints on the values of parame-
ters [8] restrict their uses in the implementation. In other languages such as
C++, the uses of the parameters in the implementation restrict the values they
can be bound to [9]. Explicit constraints eases the writing and debugging of
applications as invalid use of generic concepts can be detected using their public
interface only. Describing the minimal constraints on parameters can however
prove to be a very complex task. The upcoming C++0x [10] takes a mixed
approach: constraints are expressed as use patterns of the parameters (this is
called “concepts” in the C++0x terminology) but this does not prevent use of
parameters in the implementation that were not covered by a “concept”.

In some languages such as C++, explicit specializations can be provided for
specific values of the parameter. This makes it possible to provide optimized
implementations for these cases. This also makes the language Turing complete
and enables template meta-programming [11].

As far as we know, there is no component model with support for genericity
(except for HOCs further discussed in Sec. 3.3). The closest features found in
most models are configuration properties which are values that can be set to
configure the behaviour of components. In some models such as CCM these
configuration properties can be modified at run-time. In other models such as
SCA, they can only be set in the assembly making them more similar to generic
parameters. Unlike generic parameters however, properties are only used to carry
data-values, not types.

3.2 Algorithmic skeletons

As seen in the previous section, the implementation of algorithmic skeletons is an
example where genericity brings great advantages. Model bringing together com-
ponents and skeletons have already been described, for example in [12]. These
models are very similar to a component model supporting genericity from the
point of view of a user of skeletons: skeletons are instanciated and the implemen-
tation of the component it contains are passed as parameters. In these model
however, skeletons are supported by keywords of the assembly language and their
implementation is generated by a dedicated compiler. From the point of view of
the developer of skeletons this means that supporting new skeletons or new im-
plementations of existing skeletons requires modifications of this compiler, which
can be difficult and strongly limits reusability.

3.3 Higher order components

Higher Order Components (HOCs) [13] is a project based on the Globus grid
middleware. With HOCs, a Globus service implementation S can accept string
parameters identifying other service implementations. At run-time, S can create
instances of these services and use them, thus addressing the issue of reusable
assembly structure. However, type consistency can not be statically checked as
instantiation and use of services are deeply hidden in S implementation. Another



limitation is that only service types can be passed as parameters; data-types can
not. For the task farm implementation, it leads to a distinct implementation for
each data-type processed in the stream.

4 An approach to introduce genericity in component
models

4.1 Overview

Introducing genericity in a component model means making some of its concepts
generic. A generic concept accepts parameters and defines a family of concepts:
its specializations. Each combination of parameter values of the generic concept
defines one specialization.

Supporting generic concepts means that when one is used, the values of its
parameters must be retrieved and the correct specialization must be used. This
can either be done at run-time (as has been done for Cf for example) or through
a compilation phase (as has been done for C++ for example).

The compilation approach has the advantage of requiring no modification of
the run-time. It can also lead to a more efficient result since the computation
of the specializations to use has already been done. On the other hand, this
approach makes it impossible to dynamically instantiate specializations that
were not statically used in the initial assembly.

This paper studies the compilation approach: it describes a transformation
that takes as input a set of generic components and that generates its non generic
equivalent. The transformation is based on Model Driven Engineering (MDE). Tt
manipulates two distinct component meta-models: B, a basic (i.e. non generic)
component meta-model and G(B), the corresponding generic component meta-
model. The proposed algorithm to transform instances of G(B) into semantically
equivalent instances of B is presented in Section 4.3. The next section describes
a pattern to derive a meta-model G(B) from a basic component model whose
meta-model is B.

4.2 Genericity pattern

As a first step, the concepts of B that will be given as parameters in G(B)
and those that will accept parameters (be generic) must be chosen. An example
of application of the pattern described here is shown in Fig. 2. As G(B) is an
extension of B, all the elements of B belong to G(B); this section describes the
additions made to the meta-model to support genericity.

For each concept that can be given as a parameter (e.g. PortType in Fig. 2),
a meta-class with a “name” attribute is created to model such a parameters
(e.g. PortTypeParameter in Fig. 2). For each concept that is turned generic
(e.g. ComponentType in Fig. 2), attributes (lines in the figure) are added to its
meta-class to model its parameters.

For each concept that can be given as a parameter, an additional meta-class
that references a parameter and inherits from the initial concept is created (e.g.
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Fig. 2. Example of modifications to make ComponentType generic and to let PortType
be given as parameter.

GenericPortType in Fig. 2). This meta-class can now be used wherever the
concept given as parameter is used (e.g. Port references a PortType in Fig. 2)

For each concept that can be given as a parameter, an argument meta-class is
created to reference both the parameter and its value (e.g. PortTypeParameter
in Fig. 2). Each meta-class that references the concept made generic (Port in
Fig. 2) has an argument attribute added.

These are the minimal additions to G(B) required to support genericity.
Other additions not shown in Fig. 2 can however be interesting. To support de-
fault value for parameters, an attribute referencing the value must be added
to parameter meta-classes. For example, the PortTypeParameter will get a
PortType attribute.

To support constraints on parameters values, two approaches can be used:
either adding a constraint attribute to the parameter meta-classes or adding it
directly to the generic meta-classes. As applying constraints to the parameter
meta-classes prevents the expression of constraints that depend on more than
one parameter, the second approach is chosen. A root meta-class for constraints
must be added. The kind of constraints that can be expressed depend on the
kind of parameters. For example for a data constant parameter, a range of values
can be an interesting constraint while for an object interface, the interfaces it
extends can be constrained. For each kind of constraint, a meta-class that inherits
from the root meta-class must be added. In addition, meta-classes modeling the
various logic combinations of other constraints must be added.

To support explicit specializations, a specialization meta-class must be added
for each generic concept. This meta-class has a constraint attribute that specifies
in what case it must be used. It also has a copy of all attributes modeling the
implementation of the generic concept. The meta-class modeling the generic con-
cept on the other hand must have a specialization attribute added that models
its explicit specializations. For example, the generic ComponentType meta-class
will contain a ComponentTypeSpecialization attribute. This meta-class will
contain a Constraint attribute as well as the content of the ComponentType:
ports, implementation, etc.

4.3 Transformation from G(B) to B

This section describes an algorithm that transforms an application described in
a generic component model into its equivalent in the basic component model.



The transformation algorithm takes an instance i of G(B) (a set of meta-object
of G(B)) as input and computes a semantically equivalent instance of B. The
algorithm relies on a recursive function that takes a meta-object o of G(B) and
a context ¢ (bindings between generic parameters and their values) as input and
returns a meta-object of B semantically equivalent to o.

The main function of the algorithm iterates through all components of i.
If a component can be instantiated in an empty context (at the root of an
application), the recursive function is used to generate its equivalent in B. This
equivalent is added to the output meta-model instance.

The recursive function generates the equivalent of o using one of the four
following behaviors depending on the kind of concept the meta-class of o models.

If the modeled concept is a generic concept (such as ComponentType in
Fig. 2), c is filled with the default values for parameters that have not been
previously bound to a value. Then, the constraint on parameter values is checked:
if it is not fulfilled, the transformation is aborted with an error. The constraints
of each explicit specialization are checked. If one is fulfilled, the result of the
function applied to each meta-object contained by this specialization is added
to the result. Otherwise, the function is applied to the default content.

If the modeled concept references a parameter (such as GenericPortType
in Fig. 2), the value of this parameter is looked up in ¢ and the application of
the function to this value is returned. If there is no binding for this parameter
in ¢, the transformation is aborted with an error.

If the modeled concept references a generic concept (such as
ComponentInstance in Fig. 2), a new context is created and filled with the
arguments contained by o. Then, the result of the function applied to each meta-
object contained by o with this new context is added to the result.

If the modeled concept does not belong to any of the previous cate-
gories, the result of the function applied to each meta-object contained by o is
added to the result.

An instance of G(B) is valid if it conforms to the meta-model and leads to
a valid instance of B when the algorithm is applied. An example of instance
that conforms to the meta-model but is invalid is a composite containing (pos-
sibly transitively) an instance of itself as it may lead to infinite recursion. The
recursion can be broken if the composite accepts parameters that are used in
the constraints of an explicit specialization. As genericity with recursion and
selection of explicit specializations is very likely to be Turing-complete, the ter-
mination problem is expected to be undecidable. C++ compilers facing the same
problem fix a limit to the recursion depth after which an error is emitted.

5 Case Study: Turning SCA Generic

5.1 Overview of SCA

SCA [3] (Service Component Architecture) is a component model specification.
It aims at easing service oriented applications development by making possible



their description as components assemblies. It defines two types of ports: ser-
vices and references, both typed by an interface. Interfaces can be extracted
from various descriptors such as a JAVA interface, a WSDL interface, etc. SCA
also supports configuration properties as part of the external interface of SCA
components. Components can have two kinds of implementations: composite im-
plementations provided by an assembly or native implementations (such as JAVA
or C++ classes).

5.2 A meta-model for generic SCA

The pattern described in Section 4.2 has been applied to the SCA meta-model in
order to create a meta-model for generic SCA. The SCA meta-model described
as part of the “eclipse SCA Tools project®” has been used for this purpose.
The concepts made generic are composites and native components. Support for
generic JAVA classes has also been added. Composites accept implementations,
interfaces, data-types and data-values as parameters. Native components accept
data-types and data-values as parameters. Finally, JAVA classes accept JAVA
types as parameters.

This required the addition of height additional meta-classes: GenericIm-
plementation, ImplementationParameter, ImplementationArgument, Gener-
icInterface, InterfaceParameter, InterfaceArgument, JavaTypeParameter
and JavaTypeArgument. All the parameter meta-classes support default param-
eter value. No GenericJavaType meta-class has been created as JAVA types
are simply identified by a string containing their name. No modifications have
been done to support data-value parameters as SCA already has the concept of
configuration properties.

Support for constraints on parameter values of composites and native com-
ponents has been added with a root meta-class for constraints: Constraint.
As configuration properties are referenced by xpath expression in SCA XML
documents, a constraint meta-class that supports boolean xpath expressions
has been added: XpathConstraint. The constraints supported on other kinds
of parameters are currently limited to exact equality constraints supported by
the meta-classes ImplementationEqConstraint, InterfaceEqConstraint and
JavaTypeEqConstraint. Three constraints that support logical combinations of
other constraints have also been added:ConjonctionConstraint, Disjunction-
Constraint and NegationConstraint.

Support for explicit specialization of composite has been added with the ad-
dition of a compositeSpecialization meta-class which duplicates the content
of the Composite meta-class.

5.3 Implementation

A prototype implementation of a generic SCA to plain SCA transformation
engine has been developed. It implements the algorithm described in Section 4.3.

3 http://www.eclipse.org/stp/sca/



As a special case, support for generic JAVA classes simply consists in checking
JAVA type parameters for compatibility and erasing them. This is due to the
fact that JAvA handles generics by type erasure: type parameters are used at
compile-time for checking validity and then removed from the generated class file.

The meta-models of SCA and generic SCA are written in the ecore modeling
language, A first implementation attempt has been made with a Domain Specific
Language (DSL) for model transformations: operational Query View Transform
(QVT). The support for this language for the transformation of ecore meta-
models is however not satisfying yet and the algorithm has finally been coded in
plain JAVA.

JAVA classes corresponding to the ecore meta-classes of generic SCA have
been automatically generated. Those provided as part of the eclipse SCA Tools
project and corresponding to the meta-classes of plain SCA have been used. The
code used to instantiate these classes by parsing generic SCA XML files and to
dump them in plain SCA XML file is also automatically generated thanks to
annotations in the meta-model. More than 50.000 lines of JAvA code have been
generated; the same amount from the eclipse SCA Tools project are reused.

The implementation of the transformation algorithm requires around 750
lines of JAVA. Most of them simply copies attributes from classes modeling con-
cepts of generic SCA to the attribute with the same name in classes modeling
plain SCA (last case of the algorithm). Those could also have been automatically
generated if QVT had been used. The real logic of the algorithm only requires
around 100 lines of JAVA; this is however only an estimation as it is mixed with
the attribute copy part.

6 Generic Task Farm Component in Generic SCA

This sections examines the definition and implementation of a generic task farm
in generic SCA. It aims at showing the feasibility of the approach.

6.1 Generic Farm Component

The Farm composite implements the task farm and accepts six parameters. Two
JAVA type parameters: I and 0 define the type of the input and output of the
farm respectively. There are three implementation parameters D, W and C that
define the types of the dispatcher, workers and collector respectively; and an
integer parameter N that defines the number of workers.

Its implementation is shown in Fig. 3. It simply instanciates the D and C com-
ponents and relies on the Replication composite further described in the next
subsection to instantiate multiple instance of W. These instances are connected
by data streams simulated with a generic JAVA interface DataPush<T> with a
single asynchronous method void push(T data). This interface is used with I
as argument before the workers and with 0 after.

The D and C parameters have default values provided: RRDispatcher<T> and
SimpleCollector<T> that dispatch the data using a round-robbin algorithm



Farm<1,0,D,W,C,N>

Sa

Fig. 3. The Farm composite

and collect them with no reordering. These are generics JAVA implementations
that do not depend on the data type manipulated.

6.2 Generic Replication Component

The Replication composite implements the replication of a given component
and accepts four parameters. Two JAVA type parameters (I and 0) define the
type of its input and output. An implementation parameter (C) defines the type
of the replicated component. An integer parameter (R) defines the number of
replications.

Its implementation shown in Fig. 4 (Replication<I,0,C,R>)

relies on meta-programming and =
recursion. It contains one instance of JinyyJin
C called “additional” and one instance id = R

of Replication with the value of R
decreased by one. The base case of the
recursion is provided by an explicit
specialization used when the value of
R reaches one.

In the non specialized implementation of the composite, the “in” service
promotes two services. This is not allowed by the SCA specification. As a
workaround, a concept of multiple service has been added to generic SCA that
can only be connected to a reference with multiplicity “0..n” or “l.n”. At
transformation phase, instances of multiple services are replaced by multiple
instances of classical services.

When (R==1)

Fig.4: The Replication composite.

6.3 Evaluation

This implementation of the task farm has been used to compute pictures of
the mandelbrot set. Two kinds of workers have been written and used with the
generic task farm: one that computes the value of a single pixel at a time and
another that computes whole tiles. Each version has been used in the farm with
one, two and four workers. The transformation phase takes between one and two
seconds and most of this time is spent parsing the input files. The resulting com-
ponent have been succefully run using tuscany-java-1.4 on muticore hosts. The
meta-model for generic SCA, the compiler and the source code for these compo-
nents can be found at http://graal.ens-1lyon.fr/~jbigot/genericSCA.



7 Conclusion

This paper has studied the feasibility of increasing reusability in component
models thanks to genericity. To make use of existing models, the selected ap-
proach was to derive a generic meta-model from an existing one, and to provide
an algorithm to transform generic component applications into non-generic ones.
This has been applied to SCA and validated with an image rendering application
based on a generic task farm component.

Future works include the application of this approach to others models than
SCA, the comparison of the implementation of skeletons using genericity with
classical skeletons, the support for dynamic instantiation of generic components
and the study of the possibility to automatically compute some parameters (for
example when they are targeted at specific kind of execution resources).
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