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Résumé

Les systèmes informatiques distribués, qui fonctionnent sur plusieurs ordinateurs, sont
désormais courants et même utilisés dans des services critiques, tels que les hôpitaux,
le contrôle aérien ou ferroviaire, les réseaux de télécommunication et désormais les
voitures autonomes. Cependant, ces systèmes deviennent de plus en plus complexes,
en terme d'échelle, de dynamicité et de qualité de service attendue.

La recon�guration de systèmes distribués consiste à modi�er leur état durant leur
exécution. Les systèmes distribués peuvent être recon�gurés pour plusieurs raison,
parmi lesquelles la mise à jour de certaines de leurs parties, leur adaptation pour
obéir à de nouvelles contraintes (en termes de capacité utilisateurs, d'e�cacité én-
ergétique, de �abilité, de coûts, etc.) ou même changer leurs fonctionnalités. Du fait
de la complexité croissante de ces systèmes, de plus en plus d'acteurs interagissent
avec eux (développeurs spéci�ques à des parties précises du système, architectes de
logiciels distribués, développeurs de recon�gurations, gérants d'infrastructures, etc.).
Ainsi, il y a un besoin d'outils d'automatisation pour aider ces acteurs à déployer et
recon�gurer les systèmes distribués.

Lors de la recon�guration d'un système, les changements à e�ectuer (le plan de
recon�guration) doivent être spéci�és, que ce soit par un développeur humain ou par
un outil d'automatisation, et ensuite exécutés. Cependant, les systèmes distribués
sont composés de di�érents modules qui interagissent entre eux, et ces interactions
di�èrent en fonction de l'état de ces modules. Cela induit des contraintes sur l'ordre
dans lequel les actions de recon�guration qui composent le plan de recon�guration
doivent être exécutées.

L'objectif de cette thèse est de fournir un système pour que des développeurs ou
des outils puissent exprimer des plans de recon�guration e�caces pour les systèmes
distribués tout en prenant en compte les interactions variables entre leurs modules. Il
est attendu qu'il respecte les compétences de chaque type d'acteur, sans pour autant
faire de compromis sur l'e�cacité. De plus, il est dé�ni formellement, ce qui rend
possible le fait de fournir des garanties à ses utilisateurs telles que la terminaison d'un
plan de recon�guration ou la préservation d'un invariant pendant la recon�guration,
ce qui augmente la sûreté de la recon�guration.

Les contributions suivantes sont faites dans ce travail. Premièrement, un modèle
de déploiement formel, Madeus (le déploiement est un type spéci�que de recon�gu-
ration qui consiste à rendre un service opérationnel à partir de rien). Deuxièmement,
Concerto, un modèle formel qui étend Madeus pour supporter la recon�guration de
manière générale. Troisièmement, un modèle de performance, à la fois pour Madeus
et Concerto, ce qui rend possible d'estimer les performances attendues d'un plan
de recon�guration. Quatrièmement, une implantation des deux modèles en Python.
En�n, une évaluation théorique et expérimentale de ces modèles est présentée en ter-
mes de performance, de séparation des préoccupations, de sûreté et de précision des
modèles de performance.
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Abstract

Distributed computer systems, which run on multiple computers, are now common-
place and used even in critical systems, such as hospitals, train or air tra�c control,
telecommunication networks and now autonomous cars. However, these systems are
becoming more and more complex, in terms of scale, dynamicity and expected quality
of service.

Recon�guration of distributed systems consists in changing their state at run-
time. Distributed systems may be recon�gured for many reasons, including updating
some of their parts, adapting them to ful�ll new requirements (in terms of user ca-
pacity, energy e�ciency, reliability, costs, etc.) or even changing their capabilities.
Because of these systems' growing complexity, more and more actors interact with
them (developers speci�c to given parts of the system, distributed software architects,
recon�guration developers, infrastructure managers, etc.). Therefore, there is a need
for automated tools to assist these actors in deploying and recon�guring distributed
systems.

When recon�guring a system, the changes to be made (the recon�guration plan)
need to be speci�ed, either by a human developer or by an automated tool, and then
executed. However, distributed systems are composed of multiple modules which
interact with each other, and these interactions di�er depending on the state of each
module. This induces constraints on the order in which the recon�guration actions
that compose the recon�guration plan have to be executed.

The focus of this thesis is to provide a framework for developers or tools to express
e�cient recon�guration plans for distributed systems while taking into account the
varying interactions between their modules. It is intended to respect the skills of each
kind of actor, while not compromising on the e�ciency. Additionally, it is de�ned
formally, making it possible to provide guarantees to its users such as the termination
of a recon�guration plan or the preservation of an invariant during recon�guration,
which increases the safety of recon�guration.

The following contributions are made in this work. First, a formal deployment
model, Madeus (deployment is a speci�c type of recon�guration which consists in
setting the service up and running from scratch). Second, Concerto, a formal model
which extends Madeus to support general recon�guration. Third, a performance mod-
els for both Madeus and Concerto to be able to estimate the expected performance of
a recon�guration plan. Fourth, an implementation of both models in Python. Finally,
theoretical and experimental evaluations of these models are presented in terms of
performance, separation of concerns, safety and precision of the performance models.
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Chapter 1

Introduction

Over the past few decades, computer systems which run on multiple computers, called
distributed systems, have become more and more common and relied on. Today,
they are used even in critical systems, such as hospitals, train or air tra�c control,
telecommunication networks or autonomous cars. The management of these systems
is a complex task: one needs not only to consider a single piece of software running on a
single machine, but multiple pieces of software interacting with each other running on
multiple machines. This is becoming even more true as distributed systems become
larger (putting together more pieces of software running on more machines), more
dynamic (having the ability to evolve and react to external changes over time), run
on more heterogeneous infrastructures (e.g., fog computing, edge computing) and are
relied upon in critical systems.

An essential management task of dynamic distributed systems is their deploy-
ment. Deploying a distributed system consists in putting it in a functioning state
by executing a set of actions such as transferring �les, installing software, changing
con�guration �les or executing shell commands.

Nowadays, these systems usually function in a highly dynamic environment: they
must deal with a constantly changing number of users, changes in the price of backend
services or energy providers, geographical constraints for servers due to laws in certain
countries or latency requirements, among others. Additionally, the developers or
managers of the applications may want to add new features or update existing ones
without having to interrupt the whole system. Modifying a system at run-time is
called recon�guration, and, like deployment, consists in executing a set of actions to
perform the desired change. Because of this similarity, in the rest of this thesis we
consider deployment as a special case of recon�guration.

Recon�guration of distributed systems is complex because of the interactions be-
tween all the modules that compose these systems. Performing changes on one module
usually impacts other modules too: for example, if the database used by a web server
is suspended, the web server itself is impacted, and the service that it can provide to
its clients is degraded. All this has to be taken into consideration when recon�guring

14
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distributed systems.
Additionally, many di�erent kinds of actors interact with distributed systems and

their recon�guration. In practice, the modules which compose a given distributed
system often come from distinct providers, and yet another actor uses them as building
blocks to design the full system. It may even happen that yet another actor needs
to recon�gure the system at a later time. All of these actors have speci�c skills
and knowledge, which must be acknowledged when addressing the recon�guration of
distributed systems.

In addition to involving a large number of actors, performing recon�guration also
requires several operations to be performed. Autonomic computing is a �eld that
studies the self-management capabilities of systems. While not restricted to this
setting, recon�guration can be modeled using a the common loop of autonomic com-
puting: MAPE-K. In this model, the adaptation (or recon�guration) of a system is
broken down to four steps: monitor, analyze, plan and execute. The monitor step
consists in gathering data about the system such as the current number of users,
energy consumption, event logs, etc. The analyze step consists in deciding, using the
data gathered in the previous step, whether recon�guration should be performed, i.e.,
if changes should be made to the system. The plan step consists in, if recon�guration
should occur, determining the set of actions that should be performed to obtain the
desired result. Finally, the execute step consists in performing these actions. All these
steps share a common knowledge about the system and the models used to describe
it.

In this work, we focus on the execute step, as well as the models in the common
knowledge which are related to the execution of recon�guration (in particular, a way
of describing the set of recon�guration actions to be performed needs to be provided
to the plan step). Solutions addressing this part of the recon�guration process exist
to assist the di�erent actors to cope with the complexity that comes with recon�g-
uring distributed systems. They may be more or less generic in terms of types of
recon�guration actions that can be described. They may also provide more or less
expressivity in terms of parallelism between these actions (to increase performance in
recon�guration and limit the time during which the system is down or operates with
reduced capabilities). Finally, they may provide separation of concerns between the
actors of recon�guration to various degrees.

Research Objectives

While many solution exist for the execution of recon�guration, most of them do not
provide at the same time high levels of (a) genericity, (b) parallelism expressivity and
(c) separation of concerns between the di�erent types of actors of recon�guration.
Usually, two of them come together: (a) and (c) by generic solutions which do not
provide optimal performance in terms of time of recon�guration, (b) and (c) by so-
lution speci�c to a given type of recon�guration and, �nally, (a) and (b) by low-level
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solutions which are impractical to use in the general case.
In this work, we argue that it is possible to reconcile these three properties. We

hence aim at de�ning a generic framework for the execution of recon�guration which
at the same time allows to express a high degree of parallelism and provides a good
separation of concerns between the actors of recon�guration. This framework should
also be de�ned formally and the level of parallelism precisely de�ned, so that it can
be analyzed, evaluated and provide safety guarantees.

Contributions

In this work, we �rst consider the speci�c case of deployment (recall that we consider
deployment a special case of recon�guration), which lays the foundations for a more
general solution on recon�guration. Then, we consider recon�guration in general. In
this spirit, the contributions of this thesis are the following:

� a formal component model called Madeus which reconciles genericity, paral-
lelism expressivity and separation of concerns in the case of deployment;

� a formal component model called Concerto which extends Madeus to support
recon�guration in general while conserving these good properties;

� performance models for Madeus and Concerto, which de�ne the exact level of
parallelism that can be achieved;

� an implementation of both Madeus and Concerto in Python;

� a comprehensive evaluation of Madeus and Concerto in terms of parallelism
expressivity and separation of concerns.

Note that the Madeus model was already under study when the author joined the
team and has mainly been designed by Dimitri Pertin who is a former post-doctoral
researcher. However, the author of this dissertation has created the formal model
of Madeus entirely as well as its performance model. Furthermore, the author has
coded the most recent version of the implementation of Madeus as an abstraction
of Concerto. This version is the one used in experiments performed on Madeus,
including for papers in which the author did not directly contribute to.

Publications

The above contributions have been the subject of three publications, one in a national
conference, one in an international workshop, and one in an international conference.
Moreover two journal papers have been submitted, one currently undergoing minor
revision and one currently undergoing major revision.
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International conferences

� Maverick Chardet, Hélène Coullon, Christian Pérez. Predictable E�ciency
for Recon�guration of Service-Oriented Systems with Concerto. In CCGrid 2020
- 20th International Symposium on Cluster, Cloud and Internet Computing,
Melbourne, Australia, 2020.

� Maverick Chardet, Hélène Coullon, Christian Pérez, Dimitri Pertin. Madeus:
A formal deployment model. In 4PAD 2018 - 5th International Symposium on
Formal Approaches to Parallel and Distributed Systems (hosted at HPCS 2018),
Jul 2018, Orléans, France.

National conference

� Maverick Chardet, Hélène Coullon, Christian Pérez. Interfaces comporte-
mentales pour la recon�guration de modèles à composants. In ComPas 2018,
Toulouse, France.

Submissions to journals

� Maverick Chardet, Hélène Coullon, Christian Pérez, Dimitri Pertin, Charlène
Servantie, Simon Robillard. Enhancing Separation of Concerns, Parallelism,
and Formalism in Distributed Software Deployment with Madeus. In Journal of
Systems and Software (JSS) [Under minor revision].

� Maverick Chardet, Hélène Coullon, Simon Robillard. Toward Safe and Ef-
�cient Recon�guration with Concerto. In Science of Computer Programming
(SCP), special issue FOCLASA 2019 �Coordination and Self-Adaptiveness of
Software Applications� [Accepted].

Organization of the dissertation

This document is organized in six chapters after this introduction.
Chapter 2 de�nes several distributed systems-related concepts which will be used

in the rest of the document. Chapter 3 studies the state of the art on deployment
and recon�guration, extracts missing properties of the related work, and presents the
challenges of the thesis. Chapter 4 presents our �rst contribution, the deployment
model Madeus. After presenting its general concepts, we give a formal de�nition of
the model, followed by the presentation of a performance model and a discussion.
Chapter 5 presents our second contribution, the recon�guration model Concerto,
using a similar plan as Chapter 4. Additional information is also provided on a new
concept introduced to maintain a high separation of concerns: behavioral interfaces.
Chapter 6 �rst presents our Python implementation of Madeus and Concerto, the
one of Madeus being programmed as an abstraction over the one of Concerto. Design
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decisions are discussed and examples are provided. This chapter then evaluates both
models in terms of parallelism expressivity and separation of concerns through a real
production use-case as well as synthetic use-cases. Finally, Chapter 7 discusses the
contents of this thesis, concludes and provides ideas of future works.
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In this chapter, we introduce fundamental concepts used in the rest of this doc-
ument. In Section 2.1, we present distributed infrastructures, classify the di�erent
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types of computing resources that they provide and how to access them. In Sec-
tion 2.2, we give a de�nition for distributed applications, provide a way to represent
them using the concept of component and introduce the concept of life-cycle of a soft-
ware module. In Section 2.3, we explain what it means to recon�gure a distributed
application, present typical types of recon�guration and position recon�guration in
the context of autonomic computing. Finally, in Section 2.4, we explain how par-
allelism can occur during recon�guration, how this parallelism can be modeled and
classi�ed.

2.1 Distributed Infrastructures

2.1.1 Types of resources

Distributed infrastructures are sets of computing resources interconnected by one or
several networks, which can also be considered as resources. In this document, we
focus on computing resources and consider physical networks to be the medium in
which they live and virtual networks, which are software-de�ned, to be pieces of
software like any other.

We break down computing resources into the following categories.

Physical machine A physical machine is a physical computer with hardware re-
sources like CPUs, RAM, storage and other peripherals such as sensors, imaging
devices, etc. An operating system (OS) is in charge of handling these resources which
are shared among the programs and users of the machine.

Physical machines can be assembled into larger structures. For example, a cluster
of machines usually refers to a set of machines which have similar speci�cations and
are interconnected by a local network. According to the type of hardware that equips
a cluster (high speed network, GPUs, many-cores etc.) and to the level of abstractions
that hides the hardware and administration aspects from the end-user, a cluster may
be given a more speci�c name, such as supercomputer or cloud infrastructure. Distinct
(and possibly distant) clusters may also be organized as a �cluster of clusters� (e.g.,
grids, clouds).

Virtual machine (VM) A virtual machine is a virtual computer which does not
use physical hardware resources directly but emulated ones instead. An hypervisor
is in charge of running one or multiple virtual machines and emulating their CPU,
RAM, storage, etc. using another machine's (usually physical) resources. An oper-
ating system (OS) also runs on a virtual machine and allows to access the emulated
resources with software running on the machine itself.

Virtual machines are usually used to co-locate multiple distinct OSs using the
same physical hardware while ensuring a strong isolation between them. Multiple
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users can therefore share the same physical machine without compromising security.
Cloud providers, which will be introduced later, make heavy use of this.

Examples of virtualization solutions are Linux KVM1, VMware2 or Microsoft
Hyper-V3.

Container A container is an isolation layer running on an OS. Containers co-located
on the same OS share their access to the kernel but have distinct software, storage,
libraries, con�guration �les, etc. Containers are more lightweight than virtual ma-
chines (they all share the same OS).

A container management system, like Docker, is in charge of running these con-
tainers. Container management systems usually provide advanced management func-
tionalities such as replicas (running multiples of the same container).

Examples of container solutions are Docker4, Linux containers5 (LXC, LXD, LX-
CFS) or rkt6.

2.1.2 Provisioning computing resources

Computing resources are made available in di�erent ways.

2.1.2.1 Direct access

Sometimes, there is no need to reserve computing resources because they are directly
available. For example, private servers that run uninterrupted, workstations, etc.

2.1.2.2 Clusters and grids

Recall that clusters and grids are groups of physical computing resources. While they
are shared among multiple users, most of the time the users require that they be the
only user using the subset of resources they use to avoid interference. Reservations
therefore need to be made (on a subset of the cluster or grid). Batch schedulers such
as oar 7 or slurm8 are used to manage these infrastructures and reservations. A user
typically submits a reservation for a subset of nodes in the cluster or grid (possibly all
the nodes) and for a given period of time. When this period starts, the user is given
access to the resources, and when it stops, access is withdrawn. Examples of grids
with this type of access are the Computing Center for Research and Technology9 and

1https://www.linux-kvm.org/
2https://www.vmware.com/
3https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/
4https://www.docker.com/
5https://linuxcontainers.org/
6https://coreos.com/rkt/
7https://oar.imag.fr/
8https://slurm.schedmd.com/
9http://www-hpc.cea.fr/en/complexe/ccrt.htm

https://www.linux-kvm.org/
https://www.vmware.com/
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/
https://www.docker.com/
https://linuxcontainers.org/
https://coreos.com/rkt/
https://oar.imag.fr/
https://slurm.schedmd.com/
http://www-hpc.cea.fr/en/complexe/ccrt.htm
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the Barcelona Supercomputing Center10. Experimental platforms for research such
as Grid'500011 and Chameleon12 also provide this kind of access.

2.1.2.3 Cloud computing

The American National Institute of Standards and Technology13 de�nes cloud com-
puting [1] as follows: �Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of con�gurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly provisioned
and released with minimal management e�ort or service provider interaction.�

Cloud infrastructures can be public or private. Large public cloud actors include
Amazon Web Services14, Microsoft Azure15, Google Cloud16, and OVH17.When it
comes to private clouds, OpenStack18 is the de-facto open-source standard to operate
the underlying resources.

Cloud infrastructures use virtualization technology [2] (in particular virtual ma-
chines) to provision and release computing resources rapidly. They provide languages
or APIs (e.g., Amazon CloudFormation [3] or OpenStack Heat [4]) to let the users
specify their needs. Three main kinds of services are usually available. First, IaaS
(Infrastructure as a Service) allows users to request the creation (or the deletion) of
new virtual machines, which is usually done in a matter of seconds or minutes. The
user is then granted access to each of them. The other two, PaaS (Platform as a
Service) and SaaS (Software as a Service) allow users to create or destroy instances
of ready-to-use services or software, but they do not have to handle virtual machines
directly. The user is then provided with a way to use the services (access point,
credentials, etc.).

The virtual machines can give access to di�erent kinds of hardware (number of
CPU cores, GPU, capacity of storage, type of storage, etc.) and be hosted on ma-
chines physically located in a given location (which can be desirable to have low
latency or for legal/privacy/security reasons). A recent trend is the development of
fog computing [5, 6, 7] which consists in providing computing resources very close
to the end users (to allow very low latency or high-volume communication without
network congestion). Edge computing [8] is also developing and consists in using the
(usually small) computing resources at the very edge of the network (e.g., sensors,
chips) to pre-process the data, and therefore lowering the quantity of data to be sent

10https://www.bsc.es/
11https://www.grid5000.fr/
12https://www.chameleoncloud.org/
13https://www.nist.gov/
14https://aws.amazon.com/
15https://azure.microsoft.com/
16https://cloud.google.com/
17https://us.ovhcloud.com/
18https://www.openstack.org/
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to cloud or fog computing resources for processing. A typical example is video an-
alytics [9], in which hundreds or thousands of surveillance cameras in a smart city
process the information locally before sending only the relevant information to the
cloud, instead of streaming the whole video feed.

2.1.3 Accessing remote computing resources

Once computing resources are provisioned, one needs to be given access to them.
Depending on their intended usage, this access can have di�erent forms.

2.1.3.1 Direct shell access

In some cases, it is bene�cial for the users to have direct shell access to the computing
resources they use. This access can have di�erent levels of privilege, from read-only
to root. This kind of access, with a high-enough level of privilege, gives the most
control to the user who is able to install anything on the machine, start and stop
services, run any kind of software task at any time.

In the case of physical or virtual machines, this access is usually given through the
SSH (Secure SHell) protocol. In the case of containers, the virtualized OS directly
provides a shell accessible from the hosting machine.

2.1.3.2 Batch access

Sometimes, giving direct access to the machines to users is not desirable, either for
security purposes or to maximize the utilization of the computing resources, for ex-
ample to force releasing the machines when the computing task requested by the user
is �nished. Batch access to a machine or group of machines allows users to submit a
job to be executed (e.g., a Bash script). This job can have metadata attached to it,
such as a priority or hardware requirements (e.g., number of CPU cores, RAM and
storage capacity). A scheduler then uses this information to decide the order in which
the tasks are executed and on which computing resources. This kind of access gives
less freedom to the user compared to direct shell access as there is no way to control
when the task will be executed, and everything needs to be planned in advance. Note
that the level of privilege on the machine can also vary.

This kind of access is usually provided by computing-oriented platforms such as
clusters, grids or super-computers. It is also common in the case of federations (infras-
tructures made in part of user hardware which they can add and remove to the feder-
ation at any time). Examples of federations are Folding@home19 or Rosetta@home20.
In these cases the only objective of the task is to compute a result using input data,
and not to provide services to other systems. For example, batch access is unsuitable
to run web services.

19https://foldingathome.org/
20https://boinc.bakerlab.org/

https://foldingathome.org/
https://boinc.bakerlab.org/
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Note that batch access and direct shell access are not incompatible, and sometimes
both can be used depending on the use-case.

2.2 Distributed Software

2.2.1 Architecture of distributed applications

Distributed software can be de�ned as software which runs on distributed infrastruc-
tures. In distributed software, multiple software modules interact with each other.
Each module is located on a single compute resource, but a given compute resource
may be the host of multiple modules.

A distributed application is a piece of distributed software which is de�ned to
achieve a speci�c goal. Examples of distributed applications are web services [10],
composed of one or multiple web servers, proxies to distribute the user load over
these servers, databases to store persistent data and other back-end web services (�le
storage, image processing, etc.). A typical example would be a social networking
service.

This application may be static, in which case its set of modules is de�ned ahead
of use and remains the same during the life-time of the application, or dynamic, in
which case its set of modules and their interactions may evolve over time, and in
particular at run-time. Example of such evolutions are the increase of the number of
web servers in case of high user load, the update of modules of the application or a
change in how the modules interact.

In order to ful�ll its purpose, a distributed application must be deployed to a
distributed infrastructure. Deployment is the process which consists in installing,
con�guring and running each module of the application so that they all work together
as intended. This process is complex because modules need to run on appropriate
hardware, have proper network connectivity depending on their requirements, and
dependencies between modules need to be taken into account. These dependencies
can be of many types, such as for instance: temporal or functional when a service
cannot start before another service of another module has started, information-related
when a module needs information from another module, such as an IP address, to
con�gure itself.

For example, let us consider a web server and a MySQL database which it needs
to function properly. To deploy this application, compute resources �rst have to be
provisioned for both modules. Then, both of them have to be installed on these
resources, and con�gured. Note that the web server needs the IP address of the
database as a part of its con�guration, information which is not known prior to the
provisioning process. Then, the server cannot run before the database is operational.

Notice that the complexity grows with the number of modules and their diversity
in a distributed application. A large research community exists to solve problems
related to deployment of distributed software. In this work, we focus on one possible
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cause for complexity (dependencies between modules) and assume that the placement
problem (choosing where to deploy each module) has already been solved.

Many kinds of distributed applications exist. Server-client applications consist
in a set of modules (called the clients) interacting with a single module (called the
server) to get information they need to function. Master-worker applications are
the opposite: a module called the master provides other modules called workers
with some tasks to perform. Data-oriented applications sometimes use more complex
topologies such as map-reduce (often abstracted to the user by dedicated frameworks
such as Hadoop21) where the application is split into layers of modules (splitting,
mapping, shu�ing, reducing), each layer sending tasks to modules of the next layer.
A recent trend is the development of micro-services applications, where each module
can provide a well-de�ned service and de�nes an interface for other modules to use
this service. Web services are often structured this way. Peer-to-peer applications
consist in a set of similar modules, usually each deployed on a di�erent compute
resource, which can communicate with any other module if need be (for example to
exchange data).

We can classify the modules of distributed applications into two categories. They
can be stateless, which means that they do not store data other than their con�gu-
ration �les and possibly cache, or stateful, which means that their behavior depends
on data which depends from the previous interactions it had with other modules. A
typical example of stateful module is a database.

In this work we focus on distributed applications with the following characteristics:

� each module may provide one or more services;

� each module has a set of dependencies to a given set of services provided by
other modules;

� each module may be stateful or stateless;

� the mapping between the modules providing the services and those which use
them can be known at any given time, in particular by the system managing
the distributed application.

2.2.2 Component-based representation

The component paradigm is used both as a representation method (e.g., in UML22 -
Uni�ed Modeling Language) and a software development method (e.g., Component-
Based Software Engineering [11, 12]). It consists in describing applications as sets of
components with clearly-de�ned interfaces. These interfaces are represented by ports
(each port corresponding, for example, to a service that is provided or a requirement

21https://hadoop.apache.org/
22https://www.uml.org/

https://hadoop.apache.org/
https://www.uml.org/
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to a given service), and the ports of di�erent components are connected when they
interact (for example, when a component that requires a service uses the one provided
by another component). A set of inter-connected components is usually called an
assembly.

Database Web server

Figure 2.1: Example of a component assembly with two components: a web server
and a database. The database provides a service through its provide port and the web
server uses this service through its use port, while itself providing a service through
a provide port.

Component-based models (or component models) are particularly well-suited to
model service-oriented distributed systems, as each module can be represented by a
component, the dependencies of the module can be represented by use ports and the
services that it provides by provide ports. Figure 2.1 shows an example of a distributed
application composed of a web server and a database, the web server using the service
provided by the database.

Component models usually come with an Assembly Description Language (ADL)
which allows its users (among other things) to de�ne assemblies by listing its list of
components and connections.

2.2.3 Life-cycle of distributed applications

Life-cycle

The life-cycle of a piece of software corresponds to the set of con�gurations in which
it can be, as well as how and when it can go from one con�guration to another. A
con�guration designates everything that determines how the piece of software behaves
internally and consequently how it interacts with the outside world, directly (e.g.,
through an API) or indirectly (e.g., through what actions must be performed to put
it in a given con�guration).

For example, let us consider the MySQL database in our previous example. Two
main con�gurations �rst come to mind: running (when one can use its MySQL API)
and not running (otherwise). Both of these can be re�ned, however. When the
database is running, there are plenty of settings for a MySQL database, which can
a�ect whether some SQL requests are allowed, the speed at which requests will be
treated, etc. Likewise, when the database is not running, it may be because: the
service has not been started on the machine hosting the database, it is in an error
state, it has not yet been con�gured, some dependencies of MySQL are missing, the
database is not currently existing, etc. Given any two con�gurations, one can provide
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a set of actions to go from one to the other (such as starting the MySQL service or
installing dependencies) or a set of alternatives in case of errors.

One might notice that it is possible to consider a very large number of states to take
into consideration everything that might a�ect the interface of a piece of software to a
slight degree. For example, in the case of a database, we could consider that a write

requests e�ectively changes the interface of the database because its responses to the
following requests will be di�erent. However, the life-cycles of software are usually
considered through models which abstract away the parts which are not relevant or
practical. The most common models used to represent life-cycles are state-machines,
which are detailed later in this section.

Extension to distributed applications

Distributed applications are composed of multiple interacting modules, which each
has its own life-cycle. For example, if we consider a web server using a database,
the web server has its own life-cycle, as well as the database. Notice that these life-
cycles are not independent: the life-cycle of the web server depends on the one of the
database. This is because the web server may not provide some of its services when
the database is not running.

Representation using state-machines

Life-cycles are usually modeled using state machines or their derivatives. In the
following, three of them are introduced: basic state machines, Petri nets and UML
state-charts.

Basic state machines State machines [13, 14] are de�ned by a set of states, and
a set of transitions between those states, each labeled with a symbol from a given
alphabet. In the following, we only consider deterministic state machines, meaning
that given a state and a symbol, there is always at most one transition labeled with
this symbol leaving this state. One state is declared to be the initial state. The
state machine is always in one given state, initially the initial state. It changes states
when it receives a symbol of the alphabet as input: it follows the transition from its
current state to a new state labeled with this symbol (if there is no such transition,
the machine halts).

State machines can be used to model life-cycles by representing con�gurations
with states, possible actions by symbols of the alphabet and the fact that one action
leads from one con�guration to another by a transition between two states labeled
with this action. Figure 2.2 shows how the life-cycle of a database might be modeled
using an a basic state machine.

Petri nets While basic state-machines capture the notion of con�gurations and
actions to go from one to the other, they do not capture the potential parallelism
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error

not running

configured

running

Figure 2.2: Example of a life-cycle de�ned with a basic state machine.

between actions. For example, to go from uninstalled to con�gured, it may be possible
to parallelize actions such as downloading the dependencies and setting up the local
�le-system.

Petri nets [15, 16] are developments of state machines in which there may be
multiple current states (called places), and where transitions go from a set of source
places to a set of destination places. Active places hold one or more tokens. A
transition executes by consuming a given number of tokens from each source place
and producing a given number of tokens in each destination place.

not running

running

configured2configured1

Figure 2.3: Example of a life-cycle de�ned with a Petri net.

By considering transitions consuming a single token per source place and consum-
ing a single token per destination place, it is possible to represent parallel actions.
Figure 2.3 shows how the life-cycle of a database might be modeled using a Petri net,
with parallel actions. Note that more complex scenarios may be modeled by Petri
nets, but they are not relevant to our de�nition of a life-cycle.

UML state charts UML state charts [17, 18] are an extension to basic state ma-
chines, with additional features to improve their expressivity (in particular to model
parallelism like Petri nets), but also to reduce the explosion in number of states and
transitions as the system to model grows in size. The two main additions are nested
states and orthogonal regions. First, states can themselves be UML state charts (in
which case they are called composite, as opposed to simple). When receiving an input
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symbol, the deepest state chart in the hierarchy attempts to process it, and if no suit-
able transition exists, the state chart above it in the hierarchy makes an attempt, etc.
Second, a composite state can be composed of multiple state charts instead of one,
in which case they are considered to be orthogonal regions. When inputs are treated
at this level of the hierarchy, they are processed by both state charts in parallel.

not running

running

configured2configured1

unconfigured1 unconfigured2

Figure 2.4: Example of a life-cycle de�ned with an UML state-chart. It is composed of
two basic states (not running and running) and one composite state, itself composed
of two orthogonal regions: one containing states unconfigured1 and configured1,
and the other containing states unconfigured2 and configured2.

Figure 2.4 shows how the life-cycle of a database might be modeled using an
UML state chart, with parallel actions and nested states. The transition leaving
from state not running leads to a composite state (i.e., state which contains its own
state-machine), composed of two parallel regions. In practice, after leaving the not

running state, both the unconfigured1 and unconfigured2 states become active.
The two regions then progress independently from each other. When both states
configured1 and configured2 are active, the transition to go to state running may
be used.

2.3 Recon�guration of Distributed Applications

2.3.1 Overview

Recon�guring distributed applications consists in changing their con�guration, i.e.,
interacting with their life-cycles. Recall that the life-cycle of a distributed application
is made of the life-cycles of all of its modules, and that these life-cycles are, in the
general case, not independent from each other.
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2.3.2 Typical types of recon�guration

While an in�nite number of recon�gurations can be imagined, some recon�guration
problems are faced very often by users, which leads to some typical types of recon-
�guration being addressed by many solutions in the literature. Here we present the
most common ones.

2.3.2.1 Deployment

The deployment of an application consists in moving it from a non-existing state to
a functional state, i.e., a state in which it operated properly. A deployment could
also be called a commissioning procedure. In the case of distributed software: each
module must be deployed, respecting its dependencies to other modules.

The typical way to do this is to choose a host on which to deploy each module
(placement) and then to deploy each module when the modules it depends on have al-
ready been deployed. A deployment procedure is thus highly correlated to the type of
resources targeted, the provisioning of resources, and their access, all of which are de-
scribed in Section 2.1. Many academic contributions, production tools and languages
have been proposed to automate and ease the conception of deployment procedures.
A large part of these solutions is described and classi�ed in Chapter 3. Recall that
in this document, we consider deployment as a speci�c case of recon�guration.

2.3.2.2 Scaling

Let us consider a distributed application which includes a number of replicas of the
same module (for example compute nodes or instances of a web server). The scaling of
this distributed application consists in increasing or decreasing the number of replicas
of this module. This is usually done to maintain a good balance between costs and
quality of service, for example in the case of an application with a number of users
which varies over time.

Typically, rules are given by the user to trigger an increase or decrease in scale
depending on given metrics such as user load, CPU load of given machines, energy
consumption, etc. [19, 20, 21].

2.3.2.3 Update

Updating an application consists in replacing its code and con�guration with a new
version. In the case of distributed applications, each module may be updated indi-
vidually. However, while a module is being updated, the other modules that depend
on it have to stop using it during the update process.

This is typically done by suspending them or putting in a state in which they do
not use the module currently being updated [22, 23, 24, 25, 26, 27].

The challenges that comes with updating distributed applications are �rst to min-
imize the propagation of the service interruption, and then to minimize the downtime
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of the application, i.e., the time during which the services it provides are unavail-
able or limited. Some techniques exist to address this. In particular, rolling software
update consists in, when updating replicas of a same module, updating only a part
of them while the other ones continue serving requests. This is done for example in
OpenStack23.

2.3.2.4 Migration

Migration consists in moving one or more modules from their compute resources to
other ones. Sometimes, in a cloud computing context, this can be done by migrating
the virtual machines themselves [28], but other times the software modules themselves
are moved [29]. Sometimes, migration also refers to moving data handled by a module
to another module, possibly needing a conversion [30, 31]. This is usually done when
the hardware capabilities of the compute resources currently used do not match the
current workload (if the latter is too high, more compute power is required; if it is too
low, money and/or energy can be saved by using less powerful machines), to reduce
latency or to use another system (for example another type of database).

The main challenge with migration is to minimize the downtime, which is more
di�cult when the modules are stateful (e.g., it is not possible to run another copy on
the new resource and stop the old one once the new one is already functional).

2.3.3 Autonomic computing

Autonomic computing consists in giving any software system (distributed or not) the
capability to autonomously adapt (or self-adapt) to its evolving environment. This
process includes the monitoring of the system to control, decision-making to decide
whether changes are required, which ones, when to apply them and how, and the
execution of these changes itself. There exist several models for autonomic computing.
The one that is usually adopted in computer science and distributed systems is the
MAPE-K model introduced by IBM in 2003 [32]. MAPE-K models the autonomic
process as a loop comprised of four steps: Monitor, Analyze, Plan and Execute, all
sharing a common Knowledge.

The Monitor step consists in gathering metrics on the system, such as the CPU
load of the machines in the distributed infrastructure, the number of current users,
the energy consumption, logs, etc. The Analyze step consists in, given the metrics
collected, deciding whether or not a change should occur in the application. The Plan
phase consists in generating a recon�guration plan to achieve the change decided in
the Analyze phase. The Execute step consists in applying the recon�guration plan to
the application. The common Knowledge is made of all the models, languages and
information about the application shared between the four steps.

23https://docs.openstack.org/ironic/train/contributor/rolling-upgrades.html

https://docs.openstack.org/ironic/train/contributor/rolling-upgrades.html
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While all the steps of MAPE-K are related to recon�guration, in this document
we address speci�cally the execution of recon�guration (which takes place in step (E)
of MAPE-K), as well as the models used for the execution itself and its interface with
the other steps (K).

2.4 Parallelism in Recon�guration

2.4.1 Overview

Executing a recon�guration plan consists in performing multiple recon�guration ac-
tions. These actions usually have dependencies so that one action must have to be
executed after some other actions, but before others.

The traditional way of scheduling these actions is to pick any total order that sat-
is�es these dependencies, and execute them sequentially in that order. However, this
is not optimal in terms of performance. Intuitively, executing tasks in parallel makes
the total execution time shorter. This is for example mentioned in the conclusion
of [33]. While this claim has to be put in perspective (for example, a task may take
longer to execute if it is done in parallel with another task), increasing parallelism is
one way in which the performance of recon�guration can be improved.

Increasing parallelism can be done in two ways: executing tasks in parallel if they
are known to be independent and increasing the number of tasks which are known
to be independent. Intuitively, more detailed models of the life-cycles of the modules
leads to more information about the dependencies between recon�guration actions.
This claim will be explored further in Chapter 3.

In the following, we discuss a way to model dependencies between recon�guration
actions, and then introduce a classi�cation of the di�erent types of parallelism in
recon�guration of distributed applications.

2.4.2 Modeling sets of recon�guration actions with depen-

dency graphs

When trying to model in particular the set of actions to perform to go from one
con�guration to another, a tool at our disposal are dependency graphs. In particular,
they can be used to model the partial order of actions to perform. In the following,
we consider a particular type of dependency graphs: connected weighted directed
acyclic graph in which each arc corresponds to an action (i.e., a task), and the weight
of this arc is the time it takes for the task to complete. There are always at least
two vertices in a dependency graph: the source vertex, which is an ancestor of all the
other vertices, and the sink vertex, which is a descendant of all the other vertices. A
task t depends on another task t′ if there exists a path from the source vertex to the
sink vertex going through t′ and t in this order. A task cannot be executed before
a task it depends on is over, so that the vertices in the graph act as synchronization
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points for tasks. Two tasks which do not depend on each other can be executed in
parallel.

sink

source

Task 1
w = 2

Task 2
w = 3

Task 3
w = 1

Task 4
w = 2

Task 5
w = 5

Task 6
w = 3

Task 7
w = 1

Task 8
w = 1

Task 9
w = 3

Task 10
w = 2

Figure 2.5: An example of dependency graph.

Figure 2.5 shows an example of dependency graph. In this graph, tasks 1 and 7
can be executed in parallel because they do not depend on each other. However, task
10 depends on tasks 1, 5, 6, 7, 8 and 9 and has to wait for those to be completed
before it can execute. By de�nition, a task can execute after a duration equal to the
maximum weight of the paths from the source to the parent of its corresponding arc.
In this example, task 10 can execute after a duration equal to max(2+5+3, 1+1+3) =
max(10, 5) = 10. The path or paths with the largest weight (in this case the path
going through tasks 1, 5 and 6) is/are called critical path(s). By de�nition, the critical
paths of a vertex v are the longest paths between the source vertex and v. The critical
paths of the graph are de�ned to be the critical path(s) of the sink vertex, i.e., the
longest paths between the source vertex and the sink vertex. In our example, the
critical path of the graph is the one going through tasks 1, 5, 6 and 10. The time
complexity to �nd the critical path in a dependency graph (V,E) is O (|V |+ |E|).

2.4.3 Types of parallelism in recon�guration of distributed

systems

We introduce below three types of parallelism which may occur during recon�guration.
Note that these are not mutually exclusive. They serve as a basis for the classi�cation
of parallelism we introduce in Chapter 3.

2.4.3.1 At the host level

Distributed systems consist in software running on multiple compute resources, called
hosts. Parallelism at the host level consists in multiple hosts executing recon�guration
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actions at the same time. These actions may be identical or di�erent across hosts.

2.4.3.2 At the module level

While parallelism at the host level depends on the infrastructure, parallelism at the
module level depends on the software architecture, and in particular how the dis-
tributed system is split into modules. It consists in recon�guration actions concerning
distinct modules being executed at the same time.

2.4.3.3 Within modules

The model of the life-cycle of a module includes which recon�guration actions may
be executed and lead from one state to another. If the life-cycle is precise enough,
it may include information about which recon�guration actions can be executed in
parallel. Parallelism within modules refers to recon�guration actions a�ecting the
same module being executed in parallel.

2.5 Conclusion

In this chapter we have de�ned several concepts, in particular distributed infrastruc-
tures (and how they can be interacted with), distributed software and applications,
deployment and recon�guration of distributed applications, parallelism in recon�gu-
ration as well as autonomic loops (and how the execution of recon�guration is related
to other steps of autonomic behavior). We have seen that distributed applications are
made of modules interacting with each other, each module having its own life-cycle.
We have also introduced ways to represent these modules (component models), their
life-cycles (state machines and their derivatives) and parallelism of recon�guration
actions (dependency graph). We have also suggested that parallelism of recon�gura-
tion actions is not independent from the life-cycles of the modules being recon�gured.
This will be studied in details in the following chapter, which covers the state of the
art for this document.
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Both recon�guration and distributed systems are vast research areas. In this chap-
ter, we analyze works at the intersection of these areas, i.e., works that address the
recon�guration of distributed systems. We compare these works in there current state
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as of the publication of this thesis and do not consider their history. In Section 3.1 we
de�ne the scope of this state of the art. In Section 3.2 we list and de�ne the criteria
that we use to analyze each contribution. In Sections 3.3 and 3.4 we list and present
the contributions in our scope, grouped into two di�erent categories: con�guration
management tools and control component models. Finally, in Section 3.5 we discuss
the overall picture and draw some conclusions.

3.1 Scope

While many types of recon�guration exist, this work focuses on distributed systems,
and mostly on service-oriented systems. Moreover, we focus on two particular aspects
of recon�guration: the execution of a given recon�guration plan and the models used
to express the elements involved, the recon�guration plan, the recon�guration tasks
and their dependencies. In the context of a MAPE-K loop, this would correspond
to E (execute) and the part of K (knowledge) which concerns E or its interface to P
(plan). Finally, we aim at providing a general and generic recon�guration solution for
the targeted systems, i.e., which is not speci�c to a particular technology, language
or scenario.

Exclusions

Following these guidelines leads us to exclude the following categories of work from
this state of the art.

Software package managers Software package managers, like apt, yum or nix [34,
35], manage the set of packages installed on a given machine. Because package man-
agers consider the problem of package dependencies and package updates they can
be considered as recon�guration systems. However, they do not handle distributed
elements and remote dependencies. We hence do not consider them to perform re-
con�guration of distributed systems. Instead, we consider them as a tool which can
be used by a recon�guration framework to apply some change on a given machine.

Continuous integration, deployment and delivery DevOps is a recent trend
in software development. In [36] it is de�ned as �a set of practices intended to reduce
the time between committing a change to a system and the change being placed
into normal production, while ensuring high quality�. Among these practices are
continuous integration, deployment and delivery. Continuous integration consists in
sharing the code of an application in a common repository using a version control
system, and keep it updated with the changes made by developers on a daily basis.
Continuous deployment consists in testing, after any change has been made, if the
application still works as intended by automatically deploying the application and
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running a set of tests. When all the tests pass, the changes may be pushed to
a production environment through continuous delivery, e�ectively publishing a new
version of the software. This software may then be deployed in its most recent version,
or updated if already deployed.

While these practices may be part of a larger system to automatically update
software modules, or even add or remove resources and software modules (e.g., by
using paradigms such as infrastructure as code), they do not address the actual ex-
ecution of such a recon�guration and are therefore out of our scope. However, the
work presented in this document may be integrated to DevOps practices to enhance
the deployment and update processes.

Dynamic Software Update (DSU) frameworks DSU frameworks, like Gin-
seng [37], [38] or Coqcots/Pycots [39] allow to update the code of a running applica-
tion written in a speci�c coding language. Most of the time, the dependencies they
take into consideration are those in the call stack, because in most cases updating a
function which is currently executing is problematic. However, external work is re-
quired most of the time to handle dependencies between distinct executables running
on distinct machines. In any case, each of these frameworks target applications writ-
ten in a speci�c language (e.g., C for Ginseng, Python for Coqcots/Pycots). Indeed,
because of the techniques used in DSU, it is not possible to write a light wrapper to
encapsulate something written in another language. This makes any DSU framework
speci�c to a technology. Again, DSU may be used by the frameworks we do consider
as a way to apply some change to a given piece of software.

Standard APIs Over time, standards have been created to unify the APIs of
multiple services such as cloud providers, virtual machines or containers. For exam-
ple, OCCI [40] (Open Cloud Computing Interface) is a common interface for cloud
providers. Similarly, OVF [41] (Open Virtualization Format) is a common interface for
virtual machines and containers. These contributions may be used by recon�guration
frameworks, but in themselves they do not address the execution of recon�guration.

Autonomic frameworks addressing speci�c needs Some autonomic frame-
works de�ne a full MAPE-K work�ow to achieve speci�c goals. For example MuS-
cADeL [42] allows to express constraints over a large-scale system by de�ning multiple
scales on which the constraints can apply. These constraints consist in specifying the
system requirements of the devices where software modules must be deployed, their
required geographical location, etc. The whole system can then autonomously adapt
to changes, in particular to new users entering the system, users disconnecting from
the system, devices changing location, etc. However, the complexity of MuScADeL
is mainly located in the monitoring, analysis and planning steps of the MAPE-K
loop, not in the execution step. Similarly, Calvin [43] (and its extension Calvin Con-
strained [44] to support resource-constrained devices) provides a framework for the
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automatic management of data-driven distributed IOT applications, but does not
address speci�c issues in the execution of recon�guration.

Solutions addressing other parts of the MAPE-K loop As previously stated,
this work focuses on the execute step of the MAPE-K loop. While it has many
connections with the other steps, in particular the plan step, all the work consisting
in deciding which recon�guration should occur is out of the cope of this state of the
art. For example, Ctrl-F [45, 46] models the life-cycle of software components and
the policies of a given distributed system as a way to avoid executing recon�guration
actions that would lead the system in an inconsistent or undesirable state. It does
not address the execution of the recon�guration actions themselves, however, which
makes it complementary to the work presented in this document. In [47], the authors
provide a declarative language to express the desired con�gurations for the analyze
step to know when to perform recon�guration. Another example is the approach taken
in [48], [49] or in Safran [50], which consists in using the aspect-oriented approach
to decouple the concern of writing functional code and writing recon�guration rules
(analyze/plan) and the concern of writing functional code.

Software component models We call software component model a model in
which the functional parts of the software modules are de�ned inside components,
following the principles of CBSE [11]. This category includes CCA [51], CCM [52],
Fractal [53], SCA [54], DirectMOD [55] or BIP [56]. They provide a way to imple-
ment software in a modular and maintainable way. They include at least an abstract
model, i.e., a list of concepts which can be used to de�ne the software modules (such
as components, ports, connectors, membranes or states).

However, this abstract model does not account for practical concerns such as
how to deploy components on an infrastructure, run them or making components
communicate, either on the same computer or remotely. The core of the components
model therefore does not de�ne how to execute recon�guration. In this document,
we hence consider recon�guration frameworks which are based on component models,
but not the component models themselves.

3.2 Analysis criteria

In this section, we introduce six criteria that are used in the rest of this chapter to
analyze the literature.

3.2.1 Recon�gurable elements

Given a recon�guration framework, the recon�gurable elements are the objects that
can be manipulated during a recon�guration. The more types of elements can be



CHAPTER 3. RECONF. OF DIST. SYSTEMS: STATE OF THE ART 39

recon�gured, the more expressivity the solution has.
In this document, we focus on software recon�guration. When any command,

script or program can be executed by a recon�guration framework, any software-
related recon�guration can be expressed. In this case, we say that general software
is recon�gurable.

Some frameworks provide dedicated abstractions for more speci�c categories of
software recon�guration (e.g., management of containers). This dedicated support
improves convenience and safety. This support may be provided in addition to general
software recon�guration, or instead of it (in which case the expressivity is lower).

We observe that the following elements may have dedicated support:

� Containers - Dedicated support for containers takes the form of an abstraction
of a container service. It may support operations such as creation of containers
or groups of replicas of containers, container image management, etc.

� Virtual machines - Dedicated support for virtual machines takes the form of an
abstraction of an hypervisor. Changing the number of virtual machines used in
a distributed system or their locations are a common tasks and one of the main
arguments for the cloud paradigm.

� Custom elements - Some frameworks can be extended with additional types of
elements by the community (e.g., storage systems, database).

In the following, any natively supported element considered as an entity that can
be managed by a recon�guration framework is called a module.

3.2.2 Types of recon�guration operations supported

A recon�guration may range from deploying a couple of distributed software modules
to completely changing the architecture of a running stateful distributed system. Re-
con�guration frameworks may support only a subset of these types of recon�guration
operations. While it is always possible to manually perform recon�guration tasks with
custom code, we only consider the recon�gurations which are natively supported by
each solution. Note that for the moment we consider the recon�guration operations
on the modules that can be manipulated (presented in the previous section), and not
how the dependencies between these modules are handled. We classify the types of
recon�guration operations as follows:

� Deploy modules - Given the description of an application, ability to put in
service the modules that constitute it.

� Add modules - Given an already existing application, ability to add additional
modules to this application.
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� Remove modules - Given an already existing application, ability to remove
modules.

� Custom module operations - Ability to execute operations de�ned by the de-
veloper of this modules. These operations are usually made to change the
con�guration of the module or how it interacts with the other modules.

� Terminate the application - Ability to terminate gracefully a distributed appli-
cation. This is a subset of Remove modules without the ability to keep part of
the application alive.

Note that we consider here the capabilities at the execution level, meaning that
any planning-related feature, such as scaling (increasing or decreasing the number
of instances of a module, most likely a VM) or rolling updates (updating a set of
instances of a module in two or more steps in order to continue providing a service)
are designated by what is actually executed when they are performed (adding or
removing modules in the case of scaling, and custom module operations performing
updates in the case of rolling updates).

3.2.3 Life-cycle handling

The life-cycle of modules may be modeled and taken advantage of to di�erent extents.
In Subsection 2.2.3, we stated that life-cycles can be modeled using various kinds of
automata. We therefore use the concepts of automata to classify the di�erent types
of life-cycle models observed in the literature:

� On/o� - This is when an module is either deployed or not deployed. The
life-cycle consists of two states, on and o�. An action (or transition) may be
executed to deploy the module or delete it.

� Fixed-n - This is when an module has n possible states, but all of them are
identical for all modules. An action may be executed to go from one state to
another. Note that on/o� is the particular case �xed-2.

� Custom-seq - This is when developers may customize the life-cycle of each mod-
ule: each module can have any �nite number of states, and an action may be
executed to go from one state to another.

� Custom-par - Similar to custom-seq, except that a module may be in multiple
states and/or execute multiple actions to change states at the same time.

Additionally, as soon as there are at least three possible states, the life-cycle model
is:
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� Single-path - If there is never more than one path to go from a state to another
(not counting cycles).

� Multi-path - Otherwise. This e�ectively allows for choices to be taken at run-
time on which path to choose to go from one state to another.

On/off Fixed-3 Custom-seq single-path

Custom-seq multi-path Custom-par multi-pathCustom-par single-path

= state = transition = choice = parallel fork = parallel join

Figure 3.1: Di�erent types of life-cycle modeling. Each type is exempli�ed by a state-
machine-like representation of the life-cycles of two modules.

Figure 3.1 shows di�erent ways in which the life-cycle of a server and a database
may be modeled.

3.2.4 Parallelism of recon�guration tasks

One way to improve the performance of recon�guration, i.e., to decrease the time it
takes to execute a recon�guration plan, is to perform recon�guration tasks in parallel.
Recall that in Section 2.4.3, we have identi�ed three main types of parallelism during
recon�guration: at the host level, at the module level and within modules (which are
not mutually exclusive). In this section we introduce di�erent levels of parallelism, i.e.,
combinations of the three types of parallelism, that we can observe in the literature.
Figure 3.2 illustrates these levels of parallelism through an example where the green
action depends on the blue action of another module.
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Module-based

Inter-host same-action

Inter-module Inter-module

= reconfiguration action= module

Fail-and-retry

= host = error

= module/host reconfiguration start/end = temporal dependency

Intra-module

Figure 3.2: Di�erent levels of parallelism. Arrows represent recon�guration actions
to be executed, and the vertical axis represents time in each of the sub-�gures. We
consider that the red and yellow actions of the component on the left, as well as the
green action of the component on the right have a dependency to the blue action of
the component on the left. Note that inter-host same-action is the only level de�ned
in terms of hosts instead of modules. This is equivalent if each module of the system
is deployed on its own host, but in the general case it is less expressive.

In distributed software recon�guration framework, parallelism at the host level
exists in two forms. It can be same-action, in which case recon�guration actions
can be performed in parallel on multiple hosts only if they are identical. This is for
example the type of parallelism given by a multi-ssh connection as o�ered by cluster-
ssh. This is our �rst level of parallelism: inter-host same-action. In Figure 3.2, we
can see that the actions in red and yellow are performed at the same time on both
hosts, as they are identical. The second type of host-based parallelism is when which
action each host execute does not matter. In this case, the level of parallelism is
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determined by how the dependencies between modules are handled.
One strategy is to not handle dependencies at all, performing all actions at the

same time, and relying on an error occurring when a dependency is missing. When
the dependency of a module is missing, the recon�guration actions are attempted
again until no error is raised, i.e., until all the dependencies are satis�ed. This is our
second level of parallelism: fail and retry. In Figure 3.2, we can see that the green
recon�guration action of the module on the right and the red and yellow actions of
the module on the left are attempted three times, the two �rst of which failed because
the blue action of the module on the left had not yet completed.

Another strategy is to use information about dependencies to coordinate the re-
con�guration actions. Depending on the precision of the modeling of the life-cycles
of the modules and how dependencies are de�ned, we can observe three levels of
parallelism.

First, when dependencies are only de�ned at the module level, we have themodule-
based level: modules execute their recon�guration actions in parallel only if they have
no dependency to one another. In Figure 3.2, we see that because the module on the
right depends on the module on the left, the former's actions are executed only once
all the latter's ones have �nished executing.

Second, when dependencies between modules are de�ned in a �ne-grained way,
i.e., at the action level, we have the inter-module level: recon�guration actions of
two distinct modules can be performed in parallel even when a dependency exists
between these modules, as long as the dependencies between actions are respected.
In Figure 3.2, we see that contrary to in the module-based case the red and yellow
actions of the module on the right can be executed directly, because they do not
have dependencies. The green action can be executed just after because its only
dependency, the blue action of the other component, has already �nished executing.

Third, when dependencies between the actions of a single module are declared,
parallelism can occur within that module. In this case, we have the intra-module
level. In Figure 3.2, we can see that the red an yellow actions of both modules are
executed in parallel when intra-module parallelism is provided in addition to inter-
module parallelism.

3.2.5 Separation of concerns

We de�ne three categories of actors which may interact with a recon�guration frame-
work for distributed applications (recall that deployment is a kind of recon�guration):

� Module developers - They are experts in a type of module used in distributed
software (e.g., databases). They develop and package the module to conform to
the requirements of the recon�guration framework, and they provide documen-
tation to use the module.

� Recon�guration developers - They are experts in making modules work together
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to form a distributed application. They write recon�gurations to deploy the sys-
tem, but also to make it evolve depending on new speci�cations. They provide
the recon�gurations (possibly parametric) with documentation. Generally such
a role is carried out in a company by a DevOps engineer.

� System administrators - They make distributed systems work over an infras-
tructure they own.

Harold Ossher and Peri Tarr de�ne separation of concerns in [57] to be the ability
to identify, encapsulate and manipulate only those parts of software that are relevant
to a particular concept, goal or purpose. We argue that in distributed systems, which
involve many types of human actors with distinct �elds of expertise, each type of
actor should manipulate only elements of a recon�guration solution which are directly
relevant to the goals and purposes speci�c to their areas of expertise.

Ideally, in our case, recon�guration developers should not have to look at the
modules' implementation, and the documentation provided by the module developers
should have minimal information about the modules' internals. Similarly, system
administrators should not have to look at the details of the recon�gurations provided
by the recon�guration developers.

3.2.6 Formal modeling

Formal modeling allows to de�ne properties on the recon�guration process in a formal
way and prove them without having to execute it. This make it possible to provide
guarantees to the recon�guration developers or system administrators, such as the
termination of a recon�guration or the conformity of the system to some invariants
when performing recon�guration. We consider here the modeling of the recon�gura-
tion framework itself, not the modeling of the code of the modules provided by the
module developers.

We distinguish three levels of modeling in the literature:

� No modeling - The users are free to perform basically anything, so that it is not
possible for the framework to provide any guarantees.

� Abstraction - The users manipulate documented concepts such as nodes, com-
ponents and pre-de�ned recon�guration actions. While this is not enough to
provide formal guarantees, the possible outcomes are limited and easier to en-
vision.

� Formal model - The users manipulate concepts which are formally de�ned and
obey a formally de�ned semantics so that it is possible to precisely predict the
outcome of executing a recon�guration on a system. Note that this is at the
framework level and does not need to predict, for instance, hardware faults.
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3.3 Con�guration management tools

Con�guration management (CM) tools are widely used in the industry and are an
essential part of the DevOps[36] techniques. They allow system administrators to
deploy and con�gure virtual infrastructures or software on physical infrastructures
or in the cloud. We categorize CM tools using two criteria. The �rst is one of our
analysis criteria: which types of elements can be recon�gured. The following options
exist in the literature:

� Software only: In this case, they are called Software Con�guration Management
(SCM) tools and do not have built-in support for containers or VMs. However,
one could argue that it is possible to encapsulate infrastructure management
with code.

� Containers only: Everything that is manipulated is encapsulated into containers
which are run using a container service.

� VMs only: These are usually the services provided with hypervisors by cloud
providers to allow infrastructure managers to de�ne their infrastructure as code.

� A combination of the above.

The second criteria to categorize CM tools is their declarative or imperative na-
ture. Most of them are declarative, meaning that the users de�ne their target system,
and the recon�guration is inferred from the di�erence between this target system and
the currently existing system. However, some SCM tools are imperative, meaning
that the users declare the set of recon�guration actions to be performed directly.

Because they work in a substantially di�erent way compared to the other CM
tools, we start by presenting imperative SCM tools. Then, we introduce declarative
CM tools (including declarative SCM tools).

3.3.1 Imperative SCM tools

Ansible Ansible [58] is an imperative SCM which is built on top of SSH. An An-
sible recon�guration consists in a sequence of instructions to be executed on one or
more hosts. Such a sequence is called a playbook. Each instruction represents a re-
con�guration action and states a type of instruction (called module in Ansible, but
this notion is distinct from what we call module in this document), parameters and
the name of the group hosts on which it should be executed. The groups of hosts are
de�ned by the system administrator prior to the execution of a playbook. Sequences
of instructions can be packaged into roles, which is the Ansible equivalent of modules.
Instruction types are used to abstract away the underlying operating system and o�er
idempotent instructions for the most common con�guration operations. For example,
the mount instruction type takes as parameter which directory should be mounted to
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which path, but the actual mounting operation will not be applied if the directory is
already mounted. Instruction types can be added by the user, or the shell instruction
type can be used to perform operations using shell commands directly. When an
instruction must be executed on multiple hosts, it is done in parallel. However, two
distinct instructions are always executed sequentially.

Ansible can be seen as an abstraction of SSH with syntactic sugar for the most
common commands. It therefore recon�gures software. Even though dedicated in-
struction types exist to start or manage Docker containers, containers or virtual
machines are not treated as �rst class elements. Because there is no restriction on the
commands that can be executed, all types of recon�guration operations are possible.
The life-cycle of the modules are equivalent to custom-seq multi-path. The parallelism
is inter-host same-action. Because any code may be executed when performing re-
con�guration actions, the separation of concerns is limited. This is because Ansible
playbooks do not have information about the current state of the system, and be-
cause the instructions may be low-level system instructions, the system administrator
must ensure that executing the playbook will actually do what is expected. Ansible's
idempotent instructions help in certain cases, but using only idempotent instructions
reduces greatly the expressive power of Ansible. To the best of our knowledge, no
formal operational semantics exists for Ansible, and because any instruction can be
performed by the playbooks there are no abstractions to reason about besides the
playbooks themselves.

Chef Chef [59] is another imperative SCM tool, with a more complex architecture
than Ansible. It has a server-client architecture, and uses recipes, the Chef equivalent
of Ansible playbooks. Recipes are submitted to a central server after being tested by
an additional element, the workstation. The clients can then retrieve the recipes from
the server when they need to apply them, and the execution is performed locally
instead of remotely. Chef allows to de�ne dependencies (to other recipes) inside
recipes, which is not the case of Ansible (in Ansible all the recon�guration actions
must be declared in the same playbook). When a recipe B which depends on a recipe
A is executed by a client, it can retrieve the recipe A directly from the server and
execute it before B.

Similarly to Ansible, any kind of recon�guration action which can be de�ned by
code may be used, and therefore there is not restriction on the types of recon�guration
operations. In terms of life-cycle handling, it is also equivalent to custom-seq multi-
path. When it comes to parallelism, the execution of the recon�guration tasks by
distinct hosts are independent, because they each have their own client. However,
if a dependency exists between recipes (which can be considered as modules), one
must wait for the recipe that is depended on to be fully executed before the other
recipe's execution. We therefore have module-based parallelism. When it comes to
separation of concerns, one might argue that it is better than Ansible's because of the
dependencies between playbooks. However, the main issue of low-level recon�guration
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actions that are not aware of the context remains. There is no formal model nor
abstractions to reason about besides recipes.

3.3.2 Declarative CM tools

We start by introducing the TOSCA standard, which de�nes many concepts which
are also used by most of the declarative CM tools with small variations. We then
introduce the other solutions, comparing them to TOSCA when it makes sense.

TOSCA TOSCA [60] (Topology and Orchestration Speci�cation for Cloud Ap-
plications) is an OASIS standard for the deployment and recon�guration of cloud
applications and has multiple implementations, such as OpenTOSCA [61] or Cloud-
ify [62]. The system administrator describes the target architecture in a graph where
each node represents an element, which may be virtual machines, containers, software
or other things depending on the implementation. Note that in the following, a node
refers to a TOSCA node, corresponding to a software module. Each edge between
nodes represents a relationship (e.g., a node representing a VM contains a node rep-
resenting an OS). The nodes and the relationships are typed, and each type of node
comes with a set of artifacts describing its deployment and destruction processes, and
possibly other operations that can be performed on the node.

The TOSCA standard does not restrict what elements may be represented as
nodes. Cloudify, for example, can represent VMs on popular public and private cloud
infrastructures, containers and software. It is also extensible so that custom node
types can be created. TOSCA supports the addition and removal of elements and
o�ers the possibility to de�ne custom node operations, i.e., recon�guration actions to
perform on a node in addition to deployment and removal. By default, TOSCA de�nes
a �xed-10 life-cycle with the following states for each node: initial, creating, created,
con�guring, con�gured, starting, started, stopping, deleting and error. Also, by de-
fault, dependencies may only be precise up to the node level, which means that this
life-cycle is not used to increase the parallelism between recon�guration tasks by de-
fault. TOSCA does not specify precisely how these life-cycles should be orchestrated
and leave it to the implementation. Cloudify for example de�nes a default work�ow
(i.e., orchestration of recon�guration actions) for node startup and termination, which
executes the di�erent steps sequentially for each node in parallel, unless a dependency
exists, in which case the node that is depended on must �nish its execution before
the other one can start its own. This corresponds to node-based parallelism. Custom
work�ows may be de�ned by the users, but they must use information which is not
provided in TOSCA to improve the parallelism, i.e., information contained in the im-
plementation of the node. In this case, this corresponds to inter-module parallelism.
When performing recon�guration, the description of the target infrastructure is made
by system administrators using nodes provided by module developers. They can use
templates written by recon�guration developers to simplify the process. The separa-
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tion of concerns in TOSCA is therefore very high between these actors when using
the default work�ows. When using custom work�ows, the recon�guration developer
(or system administrator) must know the details of the nodes' implementation, re-
sulting in a low separation of concerns. When it comes to formalism, TOSCA de�nes
abstractions which can be used to reason about the recon�guration process like nodes
and relationships. But TOSCA does not come with an operational semantics, which
must be de�ned by its implementations. However, external work has been done to
model formally the TOSCA standard [63, 64], which can give guarantees if the users
take the time to formalize the implementation of each TOSCA node used.

Brooklyn Brooklyn [65] is a declarative CM tool developed by Apache. While
it is not an implementation of TOSCA, it is very similar to it and uses the same
concepts as TOSCA, including user-de�ned work�ows with their advantages in terms
of parallelism but disadvantages in terms of separation of concerns. By default, the
life-cycles are on/o�, however. Other than that, the analysis is the same as TOSCA's.

Juju Juju [66, 67] is a declarative CM tool developed by Canonical. Similarly to
Brooklyn, Juju is not an implementation of TOSCA but uses similar concepts, without
user-de�ned work�ows and with an on/o� life-cycle. The analysis is therefore the
same as Brooklyn's with the default work�ows.

Terraform Terraform [68] is an open-source CM tool which focuses on virtual in-
frastructure (VMs and containers). A graph similar to what is done using TOSCA
is de�ned by the infrastructure manager using a DSL (e�ectively implementing the
infrastructure as code paradigm). It does not come with software support, but it is
extensible so that custom nodes can be de�ned. MySQL is supported out of the box
however. Additionally, it does not support custom node operations but only addition
and deletion. Other than this, the analysis is the same as TOSCA's with the default
work�ows.

PaaSage PaaSage [69, 70] is an academic project which led to the development of a
platform for the deployment and the management of cloud applications. It essentially
works in a similar way to Terraform, except that its DSL, CAMEL [71], allows for
additional steps in the development process to increase separation of concerns when it
comes to cloud providers. The nodes representing virtual machines may correspond to
abstract speci�cations, which can then be replaced automatically by matching virtual
machines o�ered by the chosen cloud provider. Other than this, the analysis is the
same as Terraform's.

AWS CloudFormation Amazon Web Services (AWS) CloudFormation [3] is a
CM tool speci�c to AWS and allows to de�ne an infrastructure running on Amazon's
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cloud. This infrastructure is de�ned as a graph, similarly to TOSCA, using a DSL.
However, the elements that can be recon�gured are only AWS VMs, and they may
only be added or removed. It o�ers support for autonomic policies such as auto-
scaling or rolling updates which can be de�ned by using speci�c node types provided
by AWS, however this is not in the scope of this state of the art. Other than this,
the analysis is the same as TOSCA's with the default work�ows.

OpenStack Heat OpenStack Heat [4] is similar to AWS CloudFormation, but
targets infrastructures provided by an instance of OpenStack instead of AWS. It
uses its own DSL called HOT (Heat Orchestration Template) to de�ne the expected
infrastructure and de�ne autonomic behavior. The analysis is the same as AWS
CloudFormation's.

Kubernetes Kubernetes [72] is an open-source container orchestration service main-
tained by Google. It allows to de�ne container-based infrastructures in a declarative
way using its DSL, similarly to TOSCA. However, only containers are supported as
recon�gurable elements. Custom node operations are implemented using container
access points, or simply execution of arbitrary commands inside the containers. The
�xed-5 life-cycle of each container is managed by a pod, which can be in the following
states: pending, running, succeeded, failed, unknown. Kubernetes uses the fail-and-
retry strategy when it comes to parallelism. Separation of concerns is limited when
performing custom node operations, because this is done by executing arbitrary code
inside the VMs. Finally, Kubernetes provides abstractions like pods, resources and
controllers to reason about recon�guration, but no formal semantics is provided.

Docker Swarm Docker Swarm [73] is Docker's own container orchestrator. When
it comes to our analysis criteria, Docker Swarm behaves similarly to Kubernetes and
therefore the analysis is the same as Kubernetes'.

MoDEMO MoDEMO [74] is a recon�guration framework for cloud computing. It
focuses on elasticity management (i.e., scaling) of virtual machines and containers
while being agnostic to the cloud provider thanks to the use of OCCI [40].

MoDEMO can recon�gure containers and virtual machines. It supports addition,
removal (and from a planning viewpoint, scaling, which in terms of execution comes
down to adding and removing modules). The life-cycle handling is the one of OCCI,
i.e., on/o�. The parallelism is module-based. In terms of separation of concerns,
because only scaling is permitted, recon�guration developers and infrastructure man-
agers do not need to know implementation details, so there is a high separation of
concerns. MoDEMO has been formalized in UML, which corresponds to documented
abstractions, as to the best of our knowledge there is no formalization of the execution
semantics.
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Puppet Puppet [75] is a platform-independent SCM tool (the elements that can be
recon�gured are only software). It has a similar architecture to the one of Chef, i.e.,
a master/worker architecture. Users describe the expected status of the software as a
manifest, which is similar to a TOSCA graph, written in Puppet's own DSL.Modules,
similar to TOSCA node types, are available for the system administrator to use. The
manifest is then sent to a server, and each node in the system to con�gure downloads
it and applies the necessary changes. This is done by the Puppet agent which must
be installed on all the nodes. Puppet agents are similar to Chef agents, but work
in a declarative way instead of an imperative one. It is possible to execute custom
shell commands however if necessary, e�ectively guaranteeing that all recon�guration
types can be performed. Puppet has an on/o� life-cycle for the software elements.
Similarly to Chef, it has module-based parallelism. It has good separation of concerns
when not using custom shell commands (if used, it is not only about reaching a
declared state but executing custom code). It has not been formalized and provides
only abstractions.

SaltStack SaltStack [76] is similar to Puppet, the main di�erence being the lan-
guage used to describe an architecture (YAML and Python instead of Ruby), and
the persistent TCP connection kept between the Master node and the Worker nodes.
The analysis is therefore the same as Puppet's.

Jolie Redeployment Optimiser Jolie Redeployment Optimiser [77] (JRO) is a
tool to deploy and re-deploy modules described in the Jolie language [78, 79]. JRO's
major contribution is to provide an optimal deployment (adding modules) or re-
deployment plan (adding or removing modules) given some metrics.

In terms of execution, it handles software modules described in Jolie. It is able to
add and remove modules. The modules have an on/o� life-cycle and the parallelism
is module-based (dependencies can be declared between modules). The separation of
concerns is high as recon�guration developers and software administrators do not need
to know the implementation details of the modules. While Jolie has been formalized,
the JRO provides abstraction but not a formalism of its execution semantics.

3.4 Control component models

An other approach taken in the literature is to detail the life-cycle of the modules,
possibly using them to improve on parallelism. We observed that this is done using
component-based approaches, which leads to good properties such as composability,
reusability and separation of concerns. The components are not used to describe the
functional parts of the modules but focus on their control, i.e., modeling and handling
their life-cycles. In the following, we call these components control components.
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Jade Jade [80] is a middleware to manage distributed applications. It requires each
piece of software to be wrapped in a Fractal component so that they all have a uniform
interface. A module developer is in charge of wrapping legacy code with a Fractal
component to implement the common interface. This way, that piece of software can
be managed, and in particular started and stopped. Introspection and recon�guration
can be performed thanks to Fractal's recon�guration capabilities.

The elements that can be recon�gured in Jade are the pieces of software that
have been wrapped inside Fractal components. Thanks to Fractal's recon�guration
capabilities, components may be added or removed. Custom operations may be de-
�ned by exposing additional interfaces compared to just those required by Jade. The
life-cycle of Jade components is on/o�. It is possible to manually encode a more
complex life-cycle inside the membrane of a Fractal component, i.e., an area of the
component dedicated to non-functional concerns, but this is not taken advantage of
by the framework. This on/o� life-cycle induces module-based parallelism. In terms
of separation of concerns, Jade brings to legacy software some good properties of
component-based software engineering. By increasing composability and reusability,
recon�guration developers do not have to worry about individual module's business
code. However, module and recon�guration developers are required to learn Fractal
to be able to respectively produce a wrapper for the modules and write recon�gu-
rations. Finally, work has been done to write formal speci�cations for Fractal [81].
Additionally, while vanilla Fractal exposes low-level APIs for recon�guration, which
is error-prone and di�cult to check as they are called from user code, one can bene�t
from contributions to the Fractal ecosystem like FScript [82], a DSL which allows to
express Fractal recon�gurations while providing some guarantees such as termination.

Tune Tune [83] is an evolution of Jade and addresses the complexity for component
developers to wrap legacy code into Fractal components. This is done by providing a
DSL called wrapping description language (WDL) to describe the wrappers, as well
as a UML pro�le to describe recon�gurations. Even though the WDL concepts are
ultimately translated to Fractal, the user does not have to know and understand
Fractal.

Tune makes the work of component developers easier and improves separation of
concerns compared to Jade by not requiring module nor recon�guration developers
to know Fractal. Other than this, the analysis is the same as Jade's.

DeployWare DeployWare [84] is another wrapping-based middleware. Similarly
to Tune, a DSL allows software experts to de�ne the wrapper for a piece of software.
However, DeployWare manages the life-cycle of the modules by allowing developers
to write procedures for each component. These procedures must be sequential (there
is only one sequence of procedures to go from the undeployed state to the running
state and conversely) and symmetric (if a procedure leads from a state A to a state
B, a procedure leading from state B to state A must exist, e.g., install/uninstall). A



CHAPTER 3. RECONF. OF DIST. SYSTEMS: STATE OF THE ART 52

DeployWare assembly can then be de�ned by a user, which is automatically trans-
formed to a Fractal assembly handling all of the orchestration of the procedures to
deploy the full assembly.

According to our analysis criteria, DeployWare is similar to Tune. Two di�erences
exist though. First, the DeployWare framework hides the actual Fractal components.
DeployWare itself only allows for deployment and termination of the application, it
is not possible to remove only one part of it. Second, the granularity of the life-
cycle of the control components, which is custom-seq single-path. However, this does
not a�ect the parallelism, as two components may only be deployed sequentially (if
there is a dependency) or in parallel (if not), which corresponds to module-based
parallelism. Separation of concerns is high. No formal semantics is provided, but
there are abstractions.

Adage Adage [85, 86] is a deployment framework for applications on computation
grids. It features a DSL called GADe, allowing users to describe their grid application
to be deployed (directly in GADe, or by using another DSL speci�c to a programming
model, like MPI, which is then translated to GADe). Taking as input the description
of the application in GADe, the description of the available resources and control
parameters, it generates a deployment plan and executes this deployment. Even
though Adage was developed for grids, it could be adapted for more general use.

Adage can deploy general software described in GADe. It also supports plugins to
provide technology-speci�c support, i.e., custom elements. It supports the deployment
and addition of modules. Each module has a �xed sequential deployment life-cycle
(single-path). In terms of parallelism, the �rst part of the deployment (sending �les)
is done in inter-host same-action fashion, while the execution of processes is done in
a module-based fashion. The separation of concerns is high as the declaration of the
available resources, the creation of a plugin for a speci�c technology and description
of an application are completely distinct. Finally, Adage has not been formally, but
abstractions are provided thanks to GADe.

SmartFrog SmartFrog [87, 88, 89] (Smart Framework for Object Groups), created
by HP and later open-sourced, is a framework in which software components include
a functional part called managed entity, some con�guration data and a life-cycle
manager, which corresponds to our notion of control component. A life-cycle manager
is a Java class which represents a state-machine and exposes methods corresponding
to transitions in this state-machine. These methods can then be called by a scheduler
which manages the life-cycles of a set of components. Data dependencies between
components are handled through lazy bindings, which can be resolved at run-time.

SmartFrog is able to recon�gure software elements provided with a life-cycle man-
ager. The creation and deletion of elements as well as performing custom operations
is done by instantiating Java classes and calling their methods. SmartFrog provides
custom-seq multi-path life-cycles under the form of state-machines. SmartFrog does
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not come with schedulers which must be implemented by the user. In that sense,
the user is responsible for handling the �ne-grained life-cycle dependencies between
the components. The lazy bindings mechanism, if used correctly by the programmer,
allows a component to wait until some information is available. Because of this, we
can consider SmartFrog to feature inter-module parallelism. Separation of concerns is
quite high as what is exposed to the recon�guration developer are the state-machines
of the life-cycle managers produced by the module developers, provided appropriate
documentation comes with the Java classes. However, this state-machine still exposes
some of the internals of the modules, and unless every time-dependency is encoded
as a lazy binding, which is not necessarily the case, the recon�guration developer
needs to know the time-dependencies between the modules' life-cycles to write an
appropriate scheduler. Finally, some work has been done to formalize the core of
SmartFrog [90].

Engage Engage [91] is an academic framework which has similar concepts to Smart-
Frog's. In particular, the modules are associated with a state-machine to manage their
life-cycles called driver. Drivers contain at least three special states: uninstalled, in-
active and active. The component developer is then free to add addition states, as
long as there always exists a single path going from either one of these special states
to another. The modules are put together to from an application in a hierarchical
way. The transitions correspond to actions described with code to change the state
of the modules and can be guarded by a requirement of the form: all upstream/-
downstream modules must be in this special state. Engage also has mechanisms to
increase separation of concerns by deriving full speci�cations of an application from
partial ones, but this is part of the planning phase and not the execution phase of
the autonomic loop, so it is out of our scope.

What di�erentiates Engage from SmartFrog is the nature of the life-cycles (custom-
seq single-path instead of custom-seq multi-path) and how dependencies are handled:
some dependencies are declared between modules themselves, resulting in module-
based parallelism, and some dependencies are declared using the three special states
of the life-cycles of the modules in the same branch as the module considered, re-
sulting in a restricted form of inter-module parallelism. Note that using the latter
reduces the separation of concerns as the module developers needs to think about how
the modules will be composed with other modules when declaring their life-cycles.
Finally, the semantics of Engage has been formally de�ned.

Aeolus Aeolus [92] is another framework with similar concepts to SmartFrog's. The
life-cycle of each module is modeled by a state-machine inside a control component.
Each state of the life-cycle corresponds to an action being performed by the module.
One major di�erence with Engage though is that dependencies are represented by
ports of the component, which are themselves associated with states of the life-cycle.
This allows to declare in the model the part of the module's life-cycle in which the
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dependency is used. Recon�gurations are then performed using a DSL allowing to
add and remove components, and change the current state of the component following
a transition declared by the module developer.

Each control component models the life-cycle of a software module. The recon-
�guration DSL allows to add and remove modules, and also to change the current
state of existing modules. This allows in particular to perform custom module oper-
ations. The life-cycle handling is custom-seq multi-path. Because ports represent de-
pendencies between parts of the life-cycles, Aeolus features inter-module parallelism.
However, the scheduler which applies recon�guration actions using the DSL needs to
take advantage of this. Similarly to SmartFrog, the separation of concerns is pretty
high given that the recon�guration developers are provided with a state-machine for
each module and their dependencies. However, this state-machine still exposes some
internals of the module. Aeolus has been fully de�ned in a formal way.

3.5 Analysis

We have presented two main types of contributions in the literature. First, in Sec-
tion 3.3 we have introduced con�guration management (CM) tools, which we can
split into two groups: imperative CM tools and declarative CM tools. Second, in
Section 3.4, we studied what we designate by control component models, i.e., models
which provide functional modules with life-cycle managers which we call control com-
ponents. In this section, we discuss the state of the art as a whole to try and identify
trends and weaknesses. Table 3.1 summarizes the analysis presented before according
to the criteria given in Section 3.2.

3.5.1 The special case of imperative SCM tools

Imperative software con�guration management tools stand out because the life-cycles
they de�ne are composed of sequences of operations to apply, either on one or multiple
hosts. They simply execute sequences of recon�guration commands, called playbooks
in the case of Ansible and recipes in the case of Chef. Because these commands execute
concrete actions on real machines, separation of concerns is low as recon�guration
developers need to check that the code applying to di�erent modules will not interfere
with each other, and system administrators need to ensure that the code will actually
perform the intended actions. These tools can be considered to be at a lower level
compared to other solutions, meaning that they could be used by these other solutions
as a mean to execute commands on actual machines.

Finally, among the selected solutions, we can notice the uniqueness of Ansible
in terms of parallelism, because it is the only one to have inter-host same-action
parallelism.



Solution Recon�gurable Types of rec. Life-cycle Parallelism Sep. of conc. Formalism

Ansible software all custom-seq multi-path
inter-host
same-action

low no modeling

Chef software all custom-seq multi-path module-based dependencies no modeling
TOSCA (default) implem. dep. all �xed-10 module-based high third-party
TOSCA (custom) implem. dep. all custom-seq multi-path inter-module module-based dep. third-party
Brooklyn (default) all all on/o� module-based high abstractions
Brooklyn (custom) all all custom-seq multi-path inter-module module-based dep. abstractions

Juju all all on/o� module-based high abstractions

Terraform
VMs, containers
(extensible)

addition, deletion on/o� module-based high abstractions

PaaSage
VMs, containers
(extensible)

addition, deletion on/o� module-based high abstractions

CloudFormation AWS VMs addition, deletion on/o� module-based high abstractions
OpenStack Heat OpenStack VMs addition, deletion on/o� module-based high abstractions
Kubernetes containers all �xed-5 fail-and-retry high abstractions

Docker Swarm containers all �xed-5 fail-and-retry high abstractions
MoDEMO VMs, containers addition, deletion on/o� module-based high abstractions
Puppet software all on/o� module-based high (no custom com.) abstractions
SaltStack software all on/o� module-based high (no custom com.) abstractions
JRO software addition, deletion on/o� module-based high abstractions

Jade software all on/o� module-based high third-party
Tune software all on/o� module-based high third-party

DeployWare software deployment, termination custom-seq single-path module-based high abstractions

Adage software addition �xed
module-based
/ inter-host
same-action

high abstractions

SmartFrog software all custom-seq multi-path inter-module internals exposed formal semantics

Engage software all custom-seq single-path
module-based
/ inter-module

internals exposed formal semantics

Aeolus software all custom-seq multi-path inter-module internals exposed formal semantics

Table 3.1: Comparison of the solutions of the literature.
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3.5.2 Correlations between analysis criteria

We can observe connections between the di�erent analysis criteria presented in Sec-
tion 3.2 in Table 3.1. In the following, we exclude imperative SCM tools which have
been covered previously.

Life-cycles and separation of concerns We notice that there is a strong correla-
tion between how life-cycles are handled and separation of concerns. All the solutions
with very high separation of concerns feature on/o� or �xed-n life-cycles. This can
be explained by the simplicity introduced by a �xed-n life-cycle for the software mod-
ules: they all have the same interface. Moreover, when the life-cycle is not on/o�, we
observe that the parallelism is either module-based or fail-and-retry, meaning that it is
actually treated as on/o� when it comes to dependencies between modules. Because
the dependencies clearly refer to when the module is on, the startup procedure can
be hidden to the recon�guration developer, resulting in a high separation of concerns.

Life-cycles and parallelism Because inter-module parallelism requires by de�ni-
tion for software modules to have at least 3-state life-cycles, all the solutions with
inter-module parallelism need to have �xed-n or custom-seq life-cycle models. In prac-
tice, they all have custom-seq multi-path life-cycles. Note that the more precise and
custom the life-cycles can be for each module, the more precise the dependencies can
be between their life-cycles, and therefore the more opportunities for parallelism there
are. We can notice however that not all that have these kinds of life-cycle models
feature inter-module parallelism, such as Deployware for instance. We can also notice
that none of the solutions presented, and to the best of our knowledge no solution in
the literature, features intra-module parallelism, which requires custom-par life-cycles
(in which recon�guration actions of a single module can be executed in parallel).

3.5.3 Problem: how to reconcile separation of concerns and

performance?

We can observe that in the literature, separation of concerns and performance seem
to be incompatible. Declarative CM tools in general seem to favor separation of con-
cerns by providing simple and mostly uni�ed interfaces for software modules, which
abstracts away their complexity and the one of their life-cycles. This results in more
separation of concerns and less things to worry about to execute recon�gurations.
This simplicity is important for declarative CM tools, which in addition to the ex-
ecution of recon�guration also handle the monitoring, analysis and planning phases
of the autonomic loop to o�er features such as auto-scaling, auto-recovery or rolling
updates.

In the case of control component models, multiple compromises have been made.
While Jade, Tune and Deployware only provide module-based parallelism, SmartFrog,
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Engage and Aeolus provide di�erent degrees of inter-module parallelism, introducing
better performance at the cost of more complex module interfaces and lower separa-
tion of concerns.

In this thesis, we address the problem of providing a framework for the execution
of recon�guration which shows good separation of concerns between the di�erent
actors while improving performance over the state of the art by providing parallelism
of recon�guration tasks inside modules, in addition to between modules. Formal
speci�cations and semantics are also targeted in this thesis.

3.6 Conclusion

In this chapter, we have �rst set the scope of the thesis and excluded some works
addressing other aspects of recon�guration. We then have presented a set of analysis
criteria, and used them to analyze the related work.

We have seen that a high level of parallelism expressivity in recon�guration is never
associated with a high level of separation of concerns. This is due to the complexity
introduced by custom per-module life-cycles. Additionally, we have noticed that none
of the solutions achieve the maximum level of parallelism expressivity that we have
identi�ed, when recon�guration actions can be performed in parallel both between
and inside modules, using �ne-grained life-cycle dependencies to perform actions in
parallel even if one module depends from the other. In conclusion, we have observed
the lack of a general solution for recon�guration which provides both this high level
of parallelism expressivity, and a high level of separation of concerns between module
developers, recon�guration developers and infrastructure administrators.
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This chapter presents our �rst contribution: the Madeus deployment model. The
�rst objective of Madeus is to allow module developers to de�ne the life-cycle of
software modules during their deployment. The second objective is to coordinate
the deployment of a distributed application composed of these modules e�ciently.
The third objective of is to have a high separation of concerns between the module
developer and the deployment process developers. Finally, Madeus' concepts and
semantics are de�ned formally.
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In the �rst section we give an overview of Madeus based on a simple example.
Then, in the second section we de�ne all the concepts of Madeus formally. Finally,
in the third section we present a performance model for Madeus.

Work context At the beginning of my PhD, an informal prototype of Madeus
had already been developed by the team, along with a basic implementation. My
contribution was to de�ne a formal model for Madeus, along with a performance
model (presented in sections 4.2 and 4.3 respectively). This led to some signi�cant
changes, and ultimately I also wrote a new implementation.

4.1 Overview

Madeus is a control component model, in the sense introduced in Chapter 3. The
deployment life-cycle of each software module is managed by a control component
(component in the following). Considering a distributed application to be deployed,
Madeus coordinates the deployment life-cycles of its modules by executing an assem-
bly made of the components managing these modules. In this section, we introduce
the concepts used by Madeus in an informal way, based on an example. This ex-
ample consists in deploying a database and a server which uses this database and is
illustrated by Figure 4.1.

4.1.1 Component

In Madeus, each module is managed by a component, with its deployment life-cycle
encoded by a Petri-net like structure called internal-net. An internal-net is com-
posed of places, representing �milestones� in the deployment process, and transitions
representing actions that must be executed to go from one place to another. The
component's places which have no incoming transitions are called initial places. They
correspond to the state in which the module is not deployed nor being so. It is impor-
tant to realize that while in many component models components contain operational
code, i.e., address the functional aspects of the modules they represent, in Madeus
the components only contain code that controls their life-cycles. Madeus is therefore
agnostic to the technology used to implement the modules themselves, as long as they
provide an API to interact with their life-cycle.

Let us analyze the example pictured in Figure 4.1. There are two components rep-
resenting respectively a database (db) and a server (server). The db component has
three places (undeployed, allocated and running) and two transitions (allocate
and run). The server component has �ve places (uninstalled, installed, configured,
running and providing) and �ve transitions (ins, conf1, conf2, run and wait). No-
tice that transition conf1 on the one hand, and transitions ins and conf2 on the
other hand can be executed in parallel. In this example, the transitions may be as-
sociated with scripts performing deployment tasks of the database and the server.
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Figure 4.1: Madeus assembly describing the deployment procedure of a server and
the database used by the server. Components are represented by rectangles. Inside
components, places are represented by circles, initial places being �lled with gray, and
transitions are represented by arrows between places. Outside components, provide
ports are represented by arrows and use ports are represented by inverse arrows.

For example, in the db component, the allocate transition may be associated with
a script allocating a virtual machine to host the database (and boot it with a disk
image with the database already installed), while run would start the service. In the
server component, ins would be associated with a script installing packages such
as Apache, conf1 with a script performing con�guration steps which do not need for
the packages to be installed, conf2 with a script �nishing the con�guration, etc.

In Madeus, dependencies to other deployment life-cycles are represented by coor-
dination ports (in the following: ports), which di�er from the usual notion of port
in component models by the fact that they are used for coordination instead of data
transfers or remote calls. Use ports are associated with transitions and correspond to
a requirement that must be ful�lled by another Madeus component before these tran-
sitions can execute. Usually, this requirement corresponds to the other component
being able to provide some piece of information (e.g., an IP address) or to some kind
of service being served by the software module it represents (e.g., a MySQL server
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accepting connections). Provide ports correspond to a signal that a component has
reached a given milestone in its deployment process, and is therefore capable of ful-
�lling some kind of requirements, such as providing an IP address or ensuring that
some service is running.

Coming back to the example of Figure 4.1, component db has two provide ports
ip and service, respectively associated with places allocated and running. Com-
ponent server has two use ports database_ip and database, respectively associated
with transitions conf2 and wait, and one provide port service associated with place
providing.

4.1.2 Assembly

A Madeus assembly is a set of components for which each provide port may be
connected to one or more use ports. A connection between a use port and a provide
port associates the dependency (represented by the use port) to the signal ensuring it
has been ful�lled (represented by the provide port). An assembly e�ectively models
the deployment of distributed software.

In Figure 4.1, components server and db are connected to form an assembly.
Two couples of ports are connected, indicating that transition conf2 in component
server may only be executed once place allocated has been reached in component
db. Similarly, transition wait in component server may only be executed once place
running has been reached in component db.

Notice that Madeus ports are represented using arrows and not circles (which is
the UML standard to represent use/provide ports) because active provide ports in
Madeus can never be deactivated, and merely correspond to a signal.

4.1.3 Execution

A Madeus assembly can be executed: this corresponds to performing the deployment
process of some distributed software, i.e., coordinating all individual deployment tasks
(represented by the components' transitions) to make it operational. At each step of
the execution, the current progress in the deployment process of a Madeus component
is encoded by a set of tokens. At each moment, a component has one or more tokens
(multiple tokens correspond to parallel actions within a component). These tokens
are located on speci�c objects of the internal-net. For this purpose, we consider the
transitions to be complex objects, composed of three parts: beginning, in progress
and end.

A token may be on:

� a place, which means that the corresponding milestone has been reached and
the next deployment actions may be executed;
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� the beginning part of a transition, which means that the action encoded by the
transition is about to start its execution;

� the in progress part of a transition, which means that the action is being exe-
cuted;

� the end part of a transition, which means that the action has �nished its exe-
cution.

Figure 4.2: Ten snapshots of the execution of the deployment of the Madeus assembly
of Figure 4.1. Each red circle is a token, and the number inside it corresponds to which
snapshot it belongs to. Two adjacent circles with two numbers separated with a dash
represent a token corresponding to multiple snapshots (from the �rst number to the
second). Graphically, the tokens represented at the border of a place and a transition
are either on the beginning part of the transition (if the place is the origin) or on the
end part (of the place is the destination). The tokens represented in the middle of a
transition are on the in progress part of that transition.

Intuitively, these tokens evolve in a similar way to those of Petri nets, but tak-
ing into account the speci�cities of Madeus. The complete operational semantics of
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Madeus is given in Section 4.2, however we now present it informally through the ex-
ample presented in Figure 4.2. This �gure shows a series of 10 snapshots of a possible
execution of the deployment process of the assembly presented in Figure 4.1:

0. At the start, one token is put in the initial place of each component.

1. When a token is in a place, it can be removed in favor of one token at the
beginning of each transition going out of that place. In this snapshot, tokens
have been removed from the undeployed and uninstalled places and some
have been put at the beginning of their outgoing transitions.

2. When a token is at the start of a transition, it may be moved to the in progress
part of the transition (starting the corresponding deployment action) if nothing
prevents the transitions from executing. In this snapshot, transitions allocate,
ins and conf1 have started their executions.

3. When the action corresponding to a transition has �nished its execution, the
token on the in progress part of the transition may be moved to its end. In this
snapshot, transition ins was �nished and its corresponding token was moved.

4. When there is a token at the end of all the incoming transitions of a place, they
may be removed, in which case a token is put on the place. This corresponds
to a synchronization point for parallel actions. In this snapshot, there was only
one incoming transition for place installed which had a token at its end, so it
was moved to the place.

5. In this snapshot, component server has two tokens: one at the beginning of
transition conf2 and one at the end of transition conf1. None of them can be
moved at the moment. The �rst one cannot be moved because transition conf2

is bound to use port database_ip, which is connected to component db's ip
port which is itself bound to the allocated place. This means that as long as
this place has not been reached by a token, transition conf2 cannot be executed.
The second cannot be moved because transition conf2 should have a token at
its end for both tokens to be removed and one put in place configured.

6. In this snapshot, place allocated in component db has been reached, which
makes transition conf2 in component server legal to execute.

7. In this snapshot, both transitions conf1 and conf2 have �nished their execution
and have a token at their end.

8. Because both incoming transitions to place configured had a token at their
end, they were removed and one was put in the place.

9. This snapshot represents the end of the deployment process: no further actions
can be executed because only places with no outgoing transitions have a token.
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4.2 Formal Model

In the previous section, Madeus was presented informally with the help of an example.
In this section, we de�ne all the concepts used by Madeus formally and present the
operational semantics used to perform a Madeus deployment. These concepts as well
as the notations we use to refer to them in this chapter are gathered in Table 4.1 for
convenience.

4.2.1 Component

A Madeus control component can be seen as an internal-net (comprised of places
and transitions) and an interface (comprised of use and provide coordination ports).
The ports are bound to places and transitions, connecting these two parts. Formally,
a component is de�ned as a couple (N, I) where N = (Π,Θ) is an internal-net and
I = (Pu, Pp,
u,
p) is the interface and its bindings.

4.2.1.1 Internal-net

We consider a set A of deployment actions that users can de�ne using a given imple-
mentation of Madeus. This set is common to all components and may correspond, for
example, to the set of functions that can be written in a given programming language.

We de�ne the internal-net N as a directed acyclic graph (DAG) (Π,Θ), in which
each vertex is called a place (Π is a set of places) and each arc is tagged with a
deployment action and is called a transition (Θ ⊆ Π× A×Π is a set of transitions).
The set of incoming (respectively outgoing) transitions of a given place π ∈ Π are
denoted Θin(π) and Θout(π). Formally:

Θin(π) = {(πsource, α, πdest) ∈ Θ | π = πdest}
Θout(π) = {(πsource, α, πdest) ∈ Θ | π = πsource}

A place π such that Θin(π) = ∅ is said to be initial, while if Θout(π) = ∅, the place
is called �nal.

4.2.1.2 Interface and bindings

The interface of a component is comprised of a set Pu of use ports and a set Pp
of provide ports. Use ports may be bound to one or more transitions, indicating
that these transitions have a dependency to another module's life-cycle. The binding
relation 
u ⊆ Pu ×Θ is such that pu
uθ if and only if pu is bound to θ.

Provide ports may be bound to one or more places. The binding relation 
p ⊆
Pp × Π is such that pp
pπ if and only if pp is bound to the place π. The detailed
semantics is given later but intuitively, a provide port becomes active when at least
one of its bound places has been reached.
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Internal-net
Π set of places of a component

Θ ⊆ Π× A× Π set of transitions

Interface and bindings
Pu set of use ports
Pp set of provide ports


u ⊆ Pu ×Θ binding relation between use ports and transitions

p ⊆ Pp × Π binding relation between provide ports and places

Assembly
C set of components of an assembly
L set of use-provide connections of an assembly

Operational semantics
M subset of elements holding a token
R subset of places that have been reached
E set of ongoing actions

Table 4.1: Elements used by Madeus and their notations.

4.2.2 Assembly

A Madeus assembly is a tuple (C,L) comprised of a set C of components and a
set L of connections between ports. We remind that each element of C is a tuple
((Π,Θ) , (Pu, Pp,
u,
p)). We denote Πc the set of places of component c ∈ C, Θc

its set of transitions, etc. We de�ne:

Π∗ =
⋃
{Πc | c ∈ C}

Θ∗ =
⋃
{Θc | c ∈ C}

. . .

A connection is comprised of a use port of a component and a provide port of
another component. We hence have L ⊆ Pu

∗×Pp∗. In particular, a provide port can
be connected to one or multiple use ports, and a use port can be connected to one or
multiple provide ports.

A Madeus assembly is well-formed if all the use ports in its components are con-
nected to provide ports.
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4.2.3 Operational semantics

Given a Madeus assembly A, we now de�ne how the deployment procedure is per-
formed. First, we introduce the notion of con�guration of an assembly which corre-
sponds to the state of the deployment it represents. Then, we describe the execution
of the deployment as a sequence of con�gurations, representing the evolution of the
state of the deployment over time which obeys a set of semantic rules.

4.2.3.1 Con�guration

At each moment in the execution of a Madeus deployment assembly (C,L), the con-
�guration of this assembly is de�ned by a set of tokens, the set of reached places and
which actions are currently executing. A token can be on a place or on the beginning,
in progress or end parts of a transition. Formally, a con�guration is a tuple 〈M,R, E〉
where:

� M⊆ Π∗∪(Θ∗ × {beg, inp, end}) is the marking, i.e., the set of elements holding
a token;

� R ⊆ Π∗ is the set of places that have been reached;

� E ⊆ A is the set of actions that are being executed.

Note that R can be deduced from M, but we make it part of the con�guration
for the sake of simplicity.

The initial con�guration of an assembly is given by the tuple 〈I, I, ∅〉, where
I =

⋃
c∈C {π ∈ Πc | Θin(π) = ∅} (i.e., the set of initial places).

4.2.3.2 Execution

The execution of a Madeus assembly corresponds to performing the underlying de-
ployment procedure. It is described as a �nite sequence of con�gurations:

〈I, I, ∅〉 〈M1,R1, E1〉 〈M2,R2, E2〉 . . . 〈Mn,Rn, En〉

where is a binary relation which states that the direct evolution from one con�gura-
tion to another is legal. The semantic rules describing this relation are explained right
after this paragraph and are formally de�ned in Figure 4.7. An execution is complete
if there exists no con�guration 〈M′,R′, E ′〉 such that 〈Mn,Rn, En〉 〈M′,R′, E ′〉.

4.2.3.3 Semantic rules

Five rules de�ne the binary relation , i.e., state when the direct evolution from one
con�guration to another is legal. Each rules has a set of hypotheses which, if they
hold, imply that the conclusion holds. The conclusion is always that one con�guration
can directly evolve to another. In the following, we describe the conclusion by stating
the changes that are applied to the �rst con�guration to obtain the second.
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Figure 4.3: Illustration of the rule Reachπ.

Figure 4.4: Illustration of the rule Leaveπ.

Reaching place The rule Reachπ describes a token reaching a place π. It requires
that all the incoming transitions of π have a token at their end. In the conclusion,
those tokens are removed and one token is placed on π, as illustrated in Figure 4.3.
The place is also added to the set R of reached places.

Leaving place The rule Leaveπ describes how a token can leave a place π. There
are no other requirements than π holding a token. The token is removed from π
and a token added on the beginning of each of π's outgoing transitions. This rule is
illustrated in Figure 4.4.

Firing transition The rule Fireθ corresponds to the �ring of a transition θ =
(πsource, α, πdest). The beginning of the transition must hold a token, and any use port
bound to θ must be provided. A use port is provided if it is connected to at least
one active provide port of another component. A provide port is active if at least
one place bound to that port has been reached. If this is the case, then the token is
moved from the beginning of the transition to its in progress part, and the action α
starts its execution, as illustrated in Figure 4.5.

Terminating action The rule Terminα corresponds to the termination of an action
α. It requires that α be in the set E of executing actions. In practice, this rule is used
by an implementation of Madeus when the action has actually �nished executing.

Ending transition The rule Endθ formally describes the end of a transition θ =
(πsource, α, πdest). It requires that the in progress part of θ holds a token and that the
action α has terminated. If that is the case, the token is moved from the in progress
part of θ to its end. Figure 4.6 illustrates this rule.
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Figure 4.5: Illustration of the rule Fireθ.

Figure 4.6: Illustration of the rule Endθ.

4.2.3.4 Discussion

An execution of a Madeus assembly consists in a sequence of con�gurations. One can
also see this as applying semantic rules to a starting con�guration to make it evolve,
until no rule can be applied, meaning that the deployment has �nished. These rules
are applied sequentially. One may therefore wonder whether or not this impacts the
parallel execution of deployment actions. It is important to distinguish the execution
of the deployment actions from the application of the semantic rules. The deployment
actions associated with each transition are being executed while a token is on the in
progress part of the transitions. Even though the application of the semantic rules is
sequential, it is possible to have tokens on the in progress part of multiple transitions.
Moreover, the execution of a semantic rule is considered to be atomic, or at least
extremely fast compared to the execution of deployment actions. The sequential
nature of the Madeus semantics does not limit the parallelism of deployment actions.

4.3 Performance Model

In the previous section we have presented Madeus in a formal way. In this section, we
provide a model to express the total duration of a Madeus deployment as a function
of the duration of the transitions of each component of an assembly. The duration
of a transition is de�ned as the time it takes for its associated deployment action to
complete. The formula that we obtain can be used for two purposes. First, to study
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π ∈ Π∗ Θin(π) 6= ∅ T ⊆M
Reachπ〈M,R, E〉 〈(M\ T ) ∪ {π} ,R∪ {π} , E〉

where
T = {(θ, end) | θ ∈ Θin(π)}

π ∈ Π∗ Θout(π) 6= ∅ π ∈M
Leaveπ〈M,R, E〉 〈(M\ {π}) ∪ {(θ, beg) | θ ∈ Θout(π)} ,R, E〉

θ ∈ Θ∗ (θ, beg) ∈M ∀pu : pu
u
∗θ =⇒ provided(pu)

Fireθ〈M,R, E〉 〈(M\ {(θ, beg)}) ∪ {(θ, inp)} ,R, E ∪ {α}〉

where
provided(pu) ≡ ∃pp, (pu, pp) ∈ L : (∀Πb, pp
p

∗ πb : πb ∈ R)

α ∈ E Terminα〈M,R, E〉 〈M,R, E \ {α}〉

θ = (πsource, α, πdest) ∈ Θ∗ (θ, inp) ∈M α 6∈ E
Endθ〈M,R, E〉 〈(M\ {(θ, inp)}) ∪ {(θ, end)} ,R, E〉

Figure 4.7: The operational semantics of Madeus.
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how Madeus handles parallelism during deployment. Second, provided we can obtain
a reasonably precise estimation (respectively a lower/upper bound) of the duration
of the transitions, we can obtain an estimation (respectively a lower/upper bound) of
the full Madeus deployment procedure. These estimations or bounds can be useful for
a system administrator or, in the case of an automated deployment, for the algorithm
that decides if the deployment time is reasonable before executing the process, in
particular for critical systems and services.

4.3.1 Dependency graph

Our goal is to obtain a formula expressing the duration of the deployment process as
a function of the duration of the deployment actions as variables. To that end, we use
the formal semantics of Madeus to encode the execution �ow of a Madeus assembly
into a dependency graph. This problem can be divided in two: �rst, encoding the
execution �ow of each component within the assembly in their respective dependency
graph, and second, connect them together to form the dependency graph of the whole
assembly.

The general idea to obtain a dependency graph for a Madeus assembly is to
generate a dependency graph for each component of the assembly in which the tasks
comprise the execution of the transitions (in which case their weight is equal to the
duration of the given transition) and other dependencies (in which case their weight is
equal to 0). Then, we merge them together to form the dependency graph of the whole
assembly, adding some vertices and transitions to encode the dependencies between
the components. Once we have the dependency graph for the whole assembly, we can
de�ne the time it takes for the deployment process to complete as the length of the
critical path of this graph.

4.3.2 Assumptions

The performance model given here is valid only for assemblies such that any set of
places bound to a provide port contains exactly one place. This is because if a provide
port is bound to a set containing multiple places, the requirement imposed by this
binding is satis�ed as soon as one of the places is reached. The total duration then
depends on the earliest time at which one of these places is reached, which cannot
be encoded in a dependency graph. In practice this is not a severe restriction, as
ports requirements very rarely include disjunctions. However, we still consider the
possibility of having multiple sets (of one place) bound to a port. In this case, the
port is enabled when all the places have been reached, which can be encoded in the
dependency graph.
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4.3.3 Dependency graph of a component

Given a component c = ((Π,Θ) , (Pu, Pp,
u,
p)), we de�ne the dependency graph
(Vc, Ec) corresponding to its execution �ow. We de�ne the set of vertices Vc and the
set of weighted arcs Ec in the following.

4.3.3.1 Vertices

In the dependency graph, vertices represent events related to places, transitions or
ports. We de�ne Vc as the union of several sets of vertices de�ned next, plus one
source and one sink vertices.

Vc = V Π ∪ V Θ ∪ V Pu ∪ V Pp ∪
{
vsourcec , vsinkc

}
Places For each place π ∈ Π, we introduce one vertex that represents the event of
the place being reached.

V Π =
⋃
π∈Π

{
vreachπ

}
Transitions For each transition, we introduce one vertex that represents its �ring.

V Θ =
⋃
θ∈Θ

{
v�reθ

}
Use ports For each use port we introduce one vertex representing the instant when
it starts being provided.

V Pu =
⋃
pu∈Pu

{
vprovidedpu

}
Provide ports For each provide port we introduce one vertex representing the
instant when it starts providing.

V Pp =
⋃
pp∈Pp

{
vprovidingpp

}

4.3.3.2 Arcs

In the dependency graph, arcs represent the tasks that Madeus must perform. In
practice, the arcs corresponding to the execution of deployment actions are weighted
with the corresponding duration, while the other arcs have a weight of 0 and merely
represent dependencies between the application of the rules of the semantics. For
example, a token may enter a place only after all its incoming transitions have �nished
executing, i.e., have a token at their end. We de�ne Ec as the union of several sets of
arcs de�ned next.

Ec = EΘ ∪ EPu ∪ EPp ∪ EI ∪ EF
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Transitions For each transition θ = (πsource, α, πdest), we introduce two arcs. The
�rst, from vreachπsource to v

�re
θ , represents the fact that θ may only be �red after πsource has

been reached. Its weight is 0. The second, from v�reθ to vreachπdest
represents the fact that

place πdest may be reached only after the action α has �nished executing. Supposing
this requires a time dα, the weight of the arc is set to dα. EΘ is therefore de�ned as
follows.

EΘ =
⋃

θ=(πsource,α,πdest)∈Θ

{(
vreachπsource , 0, v

�re
θ

)
,
(
v�reθ , dα, v

reach
πdest

)}
Figure 4.8 illustrates how a section of Madeus internal-net with three places p1, p2
and p3 and three transitions t1, t2 and t3 (associated to actions act1, act2 and
act3 respectively) is transformed to a part of a dependency graph.

(a) Section of Madeus internal-net

vreachp3

v�ret1

vreachp1 v�ret2

vreachp2

v�ret3

dact3

dact2

dact1

0

0

0

(b) Section of dependency graph

Figure 4.8: Transformation of places and transitions to a dependency graph.

Use ports For each use port pu and each transition θ such that pu
uθ (i.e., pu is
bound to θ), we introduce one arc from vprovidedpu to v�reθ with weight 0. This represents
the fact that θ may only start once pu is provided. EPu is therefore de�ned as follows.

EPu =
⋃

(pu,θ)∈
u

{(
vprovidedpu , 0, v�reθ

)}
Figure 4.9 illustrates how a section of Madeus internal-net with two use ports u1 and
u2 (associated to transition t1 and transitions t1 and t2 respectively) is transformed
to a part (i.e., sub-graph) of dependency graph.

Provide ports For each provide port pp and each place π such that pp
pπ (i.e.,
pp is bound to the place π), we introduce one arc from vreachπ to vprovidingpp with weight
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(a) Section of Madeus internal-net

vreachp4

v�ret2

vreachp3vreachp2

v�ret1

vreachp1

vprovidedu2

vprovidedu1

. . .

. . .

dact2

dact1

0

0

0

0

0

(b) Section of dependency graph

Figure 4.9: Transformation of use ports and their bindings to a dependency graph.

0. This represents the fact that pp starts providing once all the places bound to it
have been reached. EPp is therefore de�ned as follows.

EPp =
⋃

(pp,π)∈
p

{(
vreachπ , 0, vprovidingpp

)}
Figure 4.10 illustrates how a section of Madeus internal-net with two provide ports
pr1 and pr2 (associated to places p2 and places p2 and p4 respectively) is transformed
to a section of dependency graph.

Initial places For each initial place π (recall that π is initial if it has no incoming
transitions, i.e., Θin(π) = ∅) we introduce one arc from vsourcec to vreachπ . It represents
the fact that a token is placed in each initial place in the initial con�guration of the
component.

EI =
⋃

π∈Π,Θin(π)=∅

{(
vsourcec , 0, vreachπ

)}
Final places For each �nal place π (recall that π is �nal if it has no outgoing
transitions, i.e., Θout(π) = ∅) we introduce one arc from vreachπ to vsinkc . It represents
the fact that the deployment procedure of the component terminates only after all
�nal places have been reached.

EF =
⋃

π∈Π,Θout(π)=∅

{(
vreachπ , 0, vsinkc

)}
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(a) Section of Madeus internal-net
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(b) Section of dependency graph

Figure 4.10: Transformation of provide ports and their bindings to a dependency
graph.

4.3.4 Dependency graph of an assembly

We have seen in the previous section how to generate a dependency graph for a
given component. In this subsection, we describe how to combine them to generate
a dependency graph (V,E) for a whole assembly.

Recall that an assembly is a tuple A = (C,L). In the following, we consider that
C = {c1, c2, . . . cn}.

Vertices

Given the n dependency graphs (Vci , Eci), we add a global source vertex vSOURCE and
a global sink vertex vSINK.

V S =
{
vSOURCE, vSINK

}
This gives us the set V of vertices for the dependency graph of the whole assembly.

V = V S ∪
n⋃
i=1

Vci

Arcs

We then add arcs between the global source vertex and the source vertices of the
dependency graphs of the components. Similarly, we add arcs between their sink
vertices and the global sink vertex. These arcs all have weight 0.
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ES =
n⋃
i=1

{(
vSOURCE, 0, vsourceci

)
,
(
vsinkci

, 0, vSINK
)}

Finally, for each connection (pu, pp) in L, we add one arc from the vertex repre-
senting the fact that the pp provide port starts providing to the vertex representing
the fact that the pu use port starts being provided.

EP =
⋃

(pu,pp)∈L

{(
vprovidingpp , 0, vprovidedpu

)}
This gives us the set E of arcs for the dependency graph of the whole assembly.

E = ES ∪ EP ∪
n⋃
i=1

Eci

Figure 4.11 depicts the dependency graph corresponding to the server-database
assembly of Figure 4.1. We notice the sub-graph of component db on the left, and
the one of component server on the right. In the latter, notice in particular the arcs
corresponding to the execution of transition conf1 parallel to those corresponding to
the execution of transitions ins and conf2. Notice also that these two sub-graphs
are connected by the global source and global sink vertices, and by the arcs between
the vertices corresponding to their connected ports.

4.3.5 Duration of the deployment process

We have seen in the previous subsection how to obtain the dependency graph cor-
responding to a Madeus assembly. We now detail how to express the total duration
of the deployment process as a function of the duration of the individual deployment
actions.

Because the dependency graph is weighted with the duration of the actions, intu-
itively the duration of the deployment process corresponds to the length of one of its
critical paths, i.e., one of its longest paths from vertex vSOURCE to vertex vSINK. If
the edges are weighted with values, then the duration of the deployment process can
be computed in polynomial time (relative to the size of the graph), e.g., by �nding a
topological order, because (V,E) is acyclic. Note that the size of the graph is linear
to the sum of numbers of places, transitions, ports and connections in the assembly.
However, if the edges are weighted with variables, we can express the duration of the
deployment process as a function of these variables in the following way. We de�ne
LCP (v) to be the length of a critical path from vertex vSOURCE to vertex v. We can
express LCP recursively in the following way:

LCP (v) =

{
0 if v = vSOURCE

max(vparent,w,v)∈E (w + LCP (vparent)) otherwise



CHAPTER 4. THE MADEUS DEPLOYMENT MODEL 76
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Figure 4.11: Dependency graph corresponding to the assembly of Figure 4.1.
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The duration of the deployment process is equal to LCP (vSINK), which is well-
de�ned because (V,E) is acyclic and vSOURCE is an ancestor of all the other vertices.

Using the dependency graph of Figure 4.11, we obtain the following formula for
the server-database assembly shown in Figure 4.1:

max(ddbrun + ddballocate,

dserverwait + max(ddbrun + ddballocate,

dserverrun + max(dserverconf1 ,

dserverconf2 + max(ddballocate,

dserverins ))))

Which can be simpli�ed, because the second element of the most outer max is
necessary larger than its �rst element, the proof of which is left to the reader. The
�nal formula is:

dserverwait + max(ddbrun + ddballocate,

dserverrun + max(dserverconf1 ,

dserverconf2 + max(ddballocate,

dserverins )))

4.4 Discussion

Madeus is a deployment model conceived from the ground up to have as much par-
allelism expressivity as possible. Each module of a distributed application has its
life-cycle modeled by the internal-net of a Madeus component. This internal-net is
a Petri-net-like structure which allows to express parallelism of deployment actions
within the module's own life-cycle. Using the classi�cation criteria introduced in
Chapter 3, Madeus has the custom-par multi-path level of life-cycle modeling.

The coordination between deployment actions of distinct modules is made thanks
to Madeus assemblies. Connections between the ports of components are used to
model dependencies between deployment actions of these distinct modules. Because
the ports of the components are bound to precise parts of the life-cycle, these de-
pendencies are extremely �ne-grained. This, in addition to the possibility to express
parallelism within modules, results in a state-based intra-module level of parallelism.
The performance model of Madeus allows to get a formula expressing the total de-
ployment time as a function of the duration of the individual deployment actions.
This allows to precisely de�ne the gain introduced by this high level of parallelism.
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In terms of separation of concerns, module developers are intended to develop
Madeus components, recon�guration developers are intended to assemble them as an
assembly, and �nally system administrators are intended to execute these assemblies.
While the precise evaluation of the separation of concerns is discussed in Chapter 6,
we argue that the distinction between the internal-net and the interface (made of
ports) of the components has important bene�ts in this regard.

Madeus is modeled formally and in particular has a formally de�ned operational
semantics. This opens the door to the use of formal methods to provide some guar-
antees, such as what was done in [93].

However, Madeus comes with some limitations. First, it is strictly restricted to
deployment and does not handle general recon�guration. This will be addressed
by our second contribution introduced in Chapter 5. Madeus also assumes a single
coherent representation of the assembly, which entails a centralized execution.

4.5 Conclusion

In this chapter has been presented Madeus, a formal model for the deployment of dis-
tributed software with a high degree of parallelism. The deployment life-cycle of each
module as well as its external dependencies are described in a component. The life-
cycle is de�ned as a parallel state-machine called internal-net, and the dependencies
are de�ned as a set of use and provide ports. Madeus components can be connected
together by their ports to form an assembly, describing the complete deployment
process for a (possibly complex) distributed system.

The assembly can be executed to perform the associated deployment process.
The complete operational semantics of Madeus has been introduced. This semantics
leads to a state-based intra-module level or parallelism (i.e., parallel actions within
the deployment of a module as well as across modules).

Finally, a performance model has been presented to express the total deployment
time of a Madeus assembly as a function of the duration of each individual deployment
action. In the experiments presented in Chapter 6, this will be used to predict thanks
to historical data, which can be useful to system administrators or automated systems
to make better decisions.
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The �rst objective of Concerto is to allow module developers to de�ne detailed
life-cycles for the modules, not only during their deployment but also during the rest
of their lifespans. The second objective is to let recon�guration developers de�ne
�ne-grained dependencies between the recon�guration actions of distinct modules.
The third objective is to show a high level of separation of concerns between module
developers, recon�guration developers and system administrators. Finally, Concerto's
concepts and semantics are de�ned formally.

In the �rst section we give an overview of Concerto based on a simple example.
In the second section we de�ne all the concepts and the semantics of Concerto in a
formal way. In the third section we present a performance model for Concerto. Then,
in the fourth section we present an addition to Concerto called behavioral interfaces,
which aim at improving separation of concerns for users. Finally, in the �fth section
we discuss the bene�ts and limits of Concerto.

5.1 Overview

Concerto extends the Madeus deployment model to support recon�guration. Con-
certo and Madeus hence share many concepts like internal-nets, places or transitions,
sometimes altered to support recon�guration. In particular, Concerto also uses the
control component approach. When di�erences exist, these concepts are explained
again for Concerto, while the main changes from Madeus to Concerto are outlined at
the end of this section (in Sub-section 5.1.4).

5.1.1 Component type

In Concerto, each kind of module is represented by a component type. Each compo-
nent type has its life-cycle encoded by an internal-net and its dependencies encoded
by ports, similarly to Madeus components.

Internal-net

Concerto's internal-nets are similar to Madeus', in that they are composed of places
and transitions. Additionally, each transition is associated to a behavior. Behaviors
intuitively correspond to a set of actions (i.e., transitions) to go from one state of the
life-cycle of the module to another (like deploy, suspend, update, etc.). One transition
is associated to a single behavior, but a behavior may be associated to any number of
transitions. Transitions with multiple endings, called switches, exist to model multiple
possible evolutions during the life-cycle of a components. One place in the internal-
net is designated as initial place and corresponds to the starting con�guration of the
module. Unlike Madeus, this place must be explicitly stated by the module developer.

For example, Figure 5.1 shows two component types representing respectively a
database (Db) and a proxy (Proxy). The Proxy component type has seven places
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Figure 5.1: Two Concerto component types describing the life-cycle of a database and
a proxy (which can be seen as a client). Components are represented by rectangles.
Inside components, places are represented by circles, initial places being �lled with
gray, and transitions are represented by colored arrows between places. The color of
an arrow indicates to which behavior the transition it represents is associated (the
matching between color and name of behavior is made on the right of the compo-
nent type). Switches are represented like transitions with multiple endings. Groups
are represented by gray rounded rectangles. Outside components, provide ports are
represented by semi-circles and use ports are represented by discs. Bindings between
ports and groups are represented by a thing gray line. When the line is connected to
a place instead of a group, it designates a group containing only this place.

(uninstalled, installed, nothing, read-write, leaving1, read and leaving2)
and eight transitions. The transitions ins, conf1, conf2 and rw are associated with
the behavior install, the transitions ro1 and ro2 are associated with the behav-
ior read-only, and the transitions nt1 and nt2 are associated with the behavior
no-service. Notice that transition conf1 on the one hand, and transitions ins and
conf2 on the other hand can be executed in parallel as in Madeus. The Db component
type has a switch (transition with multiple endings) sw, going from place configured
to either place sw1 or place sw2.
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Ports

In Concerto, and similarly to Madeus, dependencies to other life-cycles are represented
by ports. While provide ports in Madeus could only be activated, in Concerto they
can also be deactivated. For this reason, we need to specify which part of the life-cycle
corresponds to when the service related to the port is used or provided (depending
on the type of port). A group is a part of internal-net and corresponds to a part of
the module's life-cycle.

In Concerto, use and provide ports are bound to a group. A use port of a com-
ponent c hence represents a requirement that must be ful�lled by another Concerto
component so that c can be in the part of its life-cycle designated by the group it is
bound to. A provide port of c represents the fact that c ful�lls some requirements
while it is in the part of its life-cycle designated by the group it is bound to.

For example, in Figure 5.1, component type Proxy has two use ports (sql_write
and sql_read) and one provide port (sql). In particular, it requires some components
to provide the sql_write service to be in places read-write or leaving1 (or in
the transition between them). It also provides the sql service while it is in places
read-write, leaving1, read, leaving2 or nothing, or any transition between them.
Notice that ports are represented with discs for provide ports and semi-circles for use
ports in Concerto, instead of arrows and inverse arrows like in Madeus. This is to
signify that these ports may be deactivated unlike in Madeus.

5.1.2 Assembly

A Concerto assembly is made of a set of component instances and a set of connections
between the ports of the instances.

Component instance

A component instance (referred in the following as just instance) is made of a compo-
nent type and a state for this component type. Intuitively, an instance corresponds
to the life-cycle of an actual piece of software, while a component type is merely a
blueprint. This entails that multiple instances can have the same component type
but di�erent states. The state of an instance is determined by a marking (a set of
tokens located on places, transitions or transition endings of the component type)
and a behavior queue (a list of behaviors of the component type). Intuitively, the
marking designates in which part of its life-cycle a piece of software is, while the be-
havior queue designates the set of transitions that are to be executed by the instance
(those associated with the behaviors in the queue). The �rst behavior in the queue
is the active behavior, which designates which transitions in the internal-net of the
component type can be executed.

Figure 5.2 is an example of assembly containing two instances, an instance db

of type Db, and an instance proxy of type Proxy. Instance db has two tokens on
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Figure 5.2: Concerto assembly composed of one instance of each component type of
Figure 5.1. The tokens of the marking are represented by black discs. The behavior
queue is represented by an area at the top-right corner of each component instance
where the behaviors in the queue are listed from left to right with their respective
colors. The names of each behavior is associated to their color thanks to a list on the
right of each component instance.

transitions conf1 and conf2 and has one behavior in its queue: install. Because it
is its active behavior, the green transitions can be executed. Instance proxy has one
token on transition nt2. It has two behaviors in its queue: no-service and install.
Because no-service is its active behavior, only the red transitions can be executed.

Connections

Concerto's connections are similar to Madeus': a connection may exist between any
use port of a component instance and any provide port of another instance. They
represent a dependency between these two instances.

Execution semantics

A Concerto assembly can evolve on its own by following a set of rules governing the
location of the tokens and the evolution of the behavior queue. At each moment, a
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Status De�nition

Place, Transition, Transition ending

Active Holds a token
Inactive Not active (= does not hold a token)

Group

Active
At least one of the places of the group, transitions

between the places of the group or transition endings
of these transitions is active

Inactive Not active

Provide port

Active The group it is bound to is active

Deactivating
=⇒ Active

The group it is bound to is active but would not be active
if all the active places in the group which have outgoing
transitions associated with the active behavior transferred

their token to these outgoing transitions
Used =⇒ Active Connected to at least one active use port

Inactive Not active

Use port

Provided Connected to at least one active provide port
Active

=⇒ Provided
The group it is bound to is active

Inactive Not active

Table 5.1: Possible statuses of Concerto elements.

component has one or more tokens, like in Madeus. In Concerto, a token may be on:

� a place, which means that the corresponding milestone has been reached;

� a transition, which means that the corresponding recon�guration action is being
executed;

� a transition ending, which means that the action has �nished its execution (in
the case of a switch, a transition may have multiple endings, in which case only
one can have a token).

These tokens evolve in a similar way to those of Madeus. However, Concerto
features more complex interaction between the components through their ports. The
complete operational semantics of Concerto is given in Section 5.2, however we present
it informally through the example presented in Figure 5.3 (Table 5.1 de�nes some
notions used in the following example). In the following, each step corresponds to
one of the snapshots presented in Figure 5.3:



CHAPTER 5. THE CONCERTO RECONFIGURATION MODEL 85

read-write

leaving2

read

uninstalled

installed

install
read-only
no-service

sql_write

sql_read

sql

ins

conf2

conf1

rw

ro1

nt1

uninstalled

running

read-only

sw2

configured

allocated

cleaned

install
backup
change-config
uninstall

sql_write

sql_read

backup_out

allocate

conf1

sw

restorerun

backup_in

bak

rsarsb

res

del

sw1

behaviors:behaviors:

nothing

ro2

nt2

leaving1

conf2

proxy: Proxydb: Db

0 0

1 1 3-

1 4-
2
3

5
4 7-

6

8

9

10
11-7

14-11

1-11
12
13-15(*)

1-10
11-12

15-14

13-1215

4 5-

13-15(*)

4 7-

Figure 5.3: Sixteen snapshots of the execution of a Concerto assembly. Each red
circle is a token, and the number inside it corresponds to which snapshot it belongs
to. Two adjacent circles with two numbers separated with a dash represent a token
corresponding to multiple snapshots (from the �rst number to the second). The
numbers in red on the right of the behavior queues at the top-right of each component
instance have a similar meaning: each queue represented corresponds to a set of
snapshots.

0. At the start, we consider the case where the starting place of each component
instance is active. Both instances have a single behavior in their behavior queue:
install.

1. When a token is in a place, it can be removed and one put on each outgoing
transition of the place associated with the current behavior. In this snapshot,
tokens have been removed from the two uninstalled places and put in the
allocate, ins and conf1 transitions which are all associated to the active
behavior (install) of their respective component instances.

2. When the action corresponding to a transition has �nished its execution, the
token may be moved from the transition to its ending (or one of its endings in
the case of a switch). In this snapshot, the transition allocate has �nished its
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execution and the token it had was moved to its only transition ending.

3. When all the transition endings coming to a given place and associated to a given
behavior hold a token, i.e., when the associated recon�guration actions have
�nished their execution, these tokens can be removed and one token assigned to
the place. In this snapshot, the token was removed from the transition ending
between transition allocate and place allocated of instance db and put in
this last place.

4. Skipping a few steps, in this snapshot transition conf of instance db is holding
a token. In instance proxy, transitions inf and conf2 have �nished executing.
However, place nothing cannot yet have a token because transition conf1 has
not �nished executing.

5. In this snapshot, transition conf1 has �nished its execution.

6. In this snapshot, because both conf1 and conf2 of instance proxy have tokens
in their transition endings, these can be removed and one token put on place
nothing.

7. Skipping a few steps, transition rw of instance proxy has �nished its execution
but it is not possible to put a token in place read-write because it is in a
two-place group bound to use port sql_write and in a four-place group bound
to use port sql_read, meaning that these two ports must be provided before
a token can be put on one of its places. In this case, provide ports sql_write
and sql_read of instance db must become active.

8. Skipping a few steps, transition sw of instance db is holding a token. Notice
that sw is a particular type of transition with multiple endings called a switch.
Switches are used to decide at run-time which path in it life-cycle a component
instance should take. The decision is made by code provided by the module
developer.

9. In this snapshot, the token was moved from sw to one of its endings, the one
going to place sw1. Only one ending receives a token, which in practice is
decided by the code written by the module developer.

10. Skipping a few steps, in this snapshot the transition ending of transition run is
holding a token. In this case, both transition endings going to place running

do not have to hold a token to put a token in the place. This is because this
is not possible due to switch sw. This is symbolized by the notion of station
explained in details later in this chapter, and graphically represented by a small
black circle to which the transition ending is connected.
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11. In this snapshot, the token was moved from the transition ending of transiting
run to place running. Note that because running is in the single-place group
connected to provide port sql_write and the two-place group connected to
provide port sql_read, both ports are now active. Also, because transitions of
the install behavior can no longer be triggered in instance db (place running
is the only element holding a token and has no outgoing transitions associated
to that behavior), install is removed from the queue of behaviors which is
now empty.

12. In this snapshot, because both use ports of instance proxy are provided, the to-
ken was moved from the transition ending of transition rw to place read-write.
Because no transition associated to behavior install can be executed, it is re-
moved from the behavior queue of instance proxy which is now empty.

13. So far, the execution of a Concerto assembly has been similar to the one of a
Madeus assembly because only deployment was performed. However, the fact
that each component has multiple possible behaviors makes it so that Concerto
models the whole life-cycle of the software modules, possibly including their
deployment. Behaviors can be added to the behavior queue of component in-
stances by using a dedicated language, which is presented after this example.
For now, we suppose that behaviors backup, change-config and install on
the one hand, and read-only, no-service and install on the other hand
were added respectively to instances db and proxy. Behaviors backup and
read-only (in blue) are now the active behaviors. In this situation, transition
bak of instance db cannot start because this would mean removing the token
from place running, which is the only place in the group bound to provide port
sql_write, which is currently being used.

14. Skipping a few steps, because the active behavior of instance proxy is read-only,
the token on place read-write has moved to transition ro2. Notice that now
the group bound to use port sql_write does not contain tokens.

15. Because provide port sql_write is not used anymore, the token from place
running of instance db can be moved to transition bak.

This example illustrates the semantics of Concerto with a given static assembly.
However, Concerto's assemblies are dynamic and can be changed with a recon�gura-
tion program.

5.1.3 Recon�guration Program

Concerto comes with a language with six types of instructions which can be used
to write recon�guration programs. A recon�guration program can be applied to an
existing (possibly empty) assembly. The types of instructions are the following:
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� add(id, t) : adds a new component instance of type t with identi�er id to the
assembly;

� del(id) : removes the component instance with identi�er id to the assembly;

� con(idu, pu, idp, pp) : adds a connection in the assembly between the use port
pu of the component instance with identi�er idu and the provide port pp of the
component instance with identi�er idp;

� dcon(idu, pu, idp, pp) : similar to con, but removed the connection instead of
adding it, if the connection is being used (i.e., if the use port is currently active),
the execution of the recon�guration program is paused until the deactivation of
the use port;

� pushB(id, b) : push a behavior b to the queue of behaviors of the component
instance with identi�er id;

� wait(id) : pauses the execution of the recon�guration program until the com-
ponent instance with identi�er id has no more behaviors in its behavior queue.

Notice that most of the instructions are not blocking (only the wait and dcon, in
some scenarios, may be blocking). For example, pushB simply adds a behavior to the
queue of a component, which is not the same as actively executing this behavior. It
follows that even though the recon�guration program is a sequence of instructions,
two component instances can execute their behaviors in parallel.

Listing 5.1: Recon�guration program leading to the deployment scenario presented
in Figure 5.3 (snapshots 0 to 12)

1 add(db , Db)

2 add(proxy , Proxy)

3 con(proxy , sql_write , db, sql_write)

4 con(proxy , sql_read , db, sql_read)

5 con(db , backup_in , other_comp , other_port) # Not shown in the figure

6 pushB(db, install)

7 pushB(proxy , install)

8 wait(proxy)

An example of program is presented in Listing 5.1. This program creates the as-
sembly of which we have studied the execution presented in Figure 5.3. This program
leads to snapshot 0, and the operational semantics of Concerto then leads to snapshot
12. To go from snapshot 12 to snapshot 13, one can execute the program presented
in Listing 5.2.

Listing 5.2: Recon�guration program leading to the con�g change scenario presented
in Figure 5.3 (starting from snapshot 13)

1 pushB(db, backup)

2 pushB(db, change -config)

3 pushB(db, install)
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4 pushB(proxy , read -only)

5 pushB(proxy , no -service)

6 pushB(proxy , install)

7 wait(proxy)

5.1.4 Changes from Madeus to Concerto

Madeus and Concerto share many concepts like internal-nets an ports, and have
similarities in their execution semantics. However, some key points di�erentiate them
so that, at the cost of more complexity (in the sense of featuring more concepts),
Concerto is strictly more expressive than Madeus.

Dynamic assemblies In Madeus, assemblies are static and cannot evolve over
time. This is not a problem when considering only the deployment part of the life-
cycle of distributed systems. However, Concerto allows to model their whole life-cycle,
which can include structural changes through recon�guration. Therefore, Concerto
provides a recon�guration language to create assemblies of components or change
existing ones. Adding new components at run-time implies that one has a library of
�blueprints� which can be used as a model for the new component. This leads to the
separation of two notions in Concerto: component type and component instance. A
component type is a �blueprint�, while a component instance is the actual model of
the life-cycle of a distributed system module.

Behaviors In Madeus, the components' internal-nets are basically acyclic directed
graphs of deployment tasks with a starting point: there is only one direction in which
the execution can go. In Concerto, the internal-nets model the whole life-cycle of the
modules, possibly including deployment. The transitions of each component must be
di�erentiated depending on their objective (usually, the deployment of a module is
one possible objective). This is represented by behaviors in Concerto, each behavior
corresponding to one objective.

Deactivation of ports Usually, ports represent services or information that the
software module modeled by the component is able to provide. While deployment
usually only involves providing additional services or information as the process goes
on (e.g., IP address, con�guration information, API, etc.), recon�guration often leads
to services being suspended or information becoming invalid. Consequently, while
Madeus' provide ports are merely signals that some data or services are now avail-
able, Concerto's provide ports can both be activated, signaling availability, but also
deactivated, signaling unavailability. Concerto introduces the notion of groups to des-
ignate the part of the life-cycle of a component during which a provide port is active
or a use port is actually used. In terms of semantics, this implies that in addition
to waiting for a provide port to be active before entering a part of the life-cycle, the
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opposite also exists: waiting for a use port to be inactive so that a provide port may
be deactivated.

Transitions In Madeus, a transition is going from one place to another, and tokens
can be in three locations of the transition, meaning either that the transition is ready
to be executed, executing or has �nished executing. In Concerto, the introduction
of switches lead to a transition going from one place to one or more places (using
transition endings). The destination of the transition is decided at run-time when
its corresponding action is executed. Note that switches could also be integrated to
Madeus without di�culties. Also, in Concerto, only two locations exist for tokens:
the transition itself, meaning that it is executing, and transitions endings, meaning
that it has �nished executing. The other location used by Madeus (ready to be exe-
cuted) is not needed in Concerto because transitions can always start their execution
right away, as use ports are connected to groups (instead of transitions themselves in
Madeus). This means that if a token has entered the origin place of the transition,
then all the use ports it uses are provided.

5.2 Formal Model

While the previous section gave an overview of the concepts used in Concerto, this
section presents them and in a formal way. Table 5.2 lists all the notations for easy
reference. After that, the operational semantics of the model is also detailed.

5.2.1 Component Type

Recall that a component type is a template used to create component instances. It
includes an internal-net that describes the life-cycle of the components and ports
that corresponds to its external interface, along with its list of behaviors. Formally,
a component type is a tuple (Π, πinit,∆, P l,Θ, B, Pu, Pp, Gr).

Π is the set of places in the internal-net, with a distinguished element πinit which is
the initial place. To handle synchronization of parallel transitions, places are equipped
with stations, each attached to a place. ∆ is the set stations, and the place to which
a station δ is attached is denoted Pl(δ). B is the set of behaviors of the component
type. Θ is the set of transitions in the internal-net, where each element of Θ is a tuple
(π, b,D) with π ∈ Π the source place from which the transition originates, b ∈ B is
its associated behavior and D ⊆ ∆ the non-empty set of destination stations of the
transition. Note that a transition has a single source but one or more destinations,
because it can operate as a switch, modeling an action with various possible outcomes.
In order to distinguish these possible outcomes during the execution, we use the notion
of transition ending, i.e., a pair comprised of a transition and a station contained in
its set of destination stations. Pp is the set of provide ports and Pu the set of use
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Notation Description

Component type

Π Set of places.
πinit ∈ Π Initial place.

B Set of behaviors.
∆ Set of stations.

Pl : ∆→ Π Function associating a place to each station.
Θ ⊆ Π×B × (P (∆) \ ∅) Set of transitions (switch if multiple stations).

Pu Set of use ports.
Pp Set of provide ports.

Gr : (Pu ∪ Pp)→ P (Π) Function associating a group to each port.

Component instance

id Instance identi�er.
c Component type of the instance.

Xc For a notation X: element corresponding to
X in the tuple c.

Q ∈ L(Bc) FIFO queue of behaviors in Bc (L: list).

M⊆ Πc ∪Θc ∪ (Θc ×∆)
Set of active places, transitions and transition

endings.

Assembly

I Finite set of component instances.

X i For a notation X: element corresponding to
X in the tuple c of instance i ∈ I.

L ⊆
⋃
i1, i2 ∈ I
i1 6= i2

(
Pu

i1 × Ppi2
) Set of connections between use and provide

ports of distinct instances in I.

Table 5.2: Notations used in Concerto.

ports of the component type. Finally, Gr : (Pu ∪ Pp) → P (Π) is the function that
associates each port (use or provide) to a group, represented as a set of places (i.e., a
subset of Π).

The transitions in a single behavior are not allowed to form a cycle in the internal-
net: behaviors are meant to represent a set of operations that will terminate if the
necessary use ports are eventually provided.

Notation When we need to distinguish the elements of various component types,
we use a superscript notation, e.g., Πc to refer to the places of the type c.
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5.2.2 Component Instance

A component instance is de�ned as a tuple (id, c, Q,M), where id is a unique iden-
ti�er, c is a component type, Q is a sequence of elements of Bc, andM a subset of
Πc ∪ Θc ∪ (Θc ×∆c). This tuple describes the state of the instance at some point
in the execution. In particular, Q represents a queue of behaviors to be successively
executed, and M is the set of places, transitions and transition endings that hold
tokens. Tokens are central in the semantics, where they denote a current state (to-
kens on places), an ongoing action (tokens on transitions) or the result of an action
(tokens on transition endings).

5.2.3 Assembly and Recon�guration Program

An assembly is a set of component instances and links between their ports. Formally,
it is de�ned as a pair (I, L), where I is a �nite set of component instances, and L is a
set of tuples (i1, pu, i2, pp), where i1 ∈ I is a component of type c1, i1 ∈ I is a distinct
component of type c2, pu ∈ Puc1 and pp ∈ Ppc2 .

A recon�guration program is a sequence of recon�guration instructions targeting
an assembly. For some element e and some sequence of elements S, we denote e · S
(respectively S ·e) the sequence constructed by adding e at the beginning (respectively
the end) of S. The empty sequence is denoted [].

The available instructions are add(id, c) and del(id) (creation and deletion of com-
ponent), con(id1, pu, id2, pp) and dcon(id1, pu, id2, pp) (connection and disconnection),
pushB(id, b) (request to execute a behavior), and wait(id) (synchronization), where
id must be an instance identi�er, c a component type, pu a use port, pp a provide
port and b a behavior. The semantics of these instruction is detailed below.

5.2.4 Operational Semantics

We now de�ne the rules that describe how a Concerto assembly evolves and how a
recon�guration program a�ects it. To that end, we introduce the notion of con�gu-
ration. A con�guration is a tuple 〈(I, L), R〉 where (I, L) is an assembly and R is a
recon�guration program. The semantics are given by a relation over con�gurations.

5.2.4.1 Statuses of ports

We �rst give some de�nitions related to ports, that will later be needed to de�ne the
synchronization conditions in the semantic rules.

The status of a port is decided by the group (set of places) which it is bound to.
A group is active if at least one of its places holds a token, or if at least one transition
(or transition ending) located between two of its places holds a token. Formally, we
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not used

active behavior: 

Figure 5.4: Illustration of the rule Firebπ.

de�ne the elements of a group G to be

elements(G) ≡
⋃

G ∈ Πc

{(πsource, b,D) ∈ Θ | πsource ∈ G ∧ ∀δ ∈ D, P l(δ) ∈ G}
{((πsource, b,D), δ) ∈ Θ×∆ | δ ∈ D ∧ s ∈ G ∧ ∀δ′ ∈ D, P l(δ′) ∈ G}

A use or provide port p in an instance i = (c, id,Q,M) is active if the group
bound to it is active.

active(i, p) ≡ elements(Gr (p)) ∩M 6= ∅

For an active provide port pp in an instance i = (c, id, b ·Q,M), we also need to
consider the special case where the component is ready to �re transitions that will
lead to the de-activation of the port. In this case, the port only provides to the use
ports that are already using it, and refuses new usage. This state is de�ned by:

refusing(i, pp) ≡
(
∀e ∈ elements(Gr(pp)), e ∈M =⇒ exit(e,Gr(pp))

)
where exit(e,G) holds when e is a place and has outgoing transitions in the current
behavior b of the instance that leave the group G, and no transitions that do not
leave G

exit(e,G) ≡ e ∈ Πc∧
(
∃D, (e, b,D) ∈ Θ

)
∧
(
∀D∀δ, (e, b,D) ∈ Θ∧δ ∈ D =⇒ Pl(δ) /∈ G)

)
5.2.4.2 Evolution of component instances

We now present the rules that describe the evolution of component instances, in-
dependent of any recon�guration instruction. Each of of these rules a�ects exactly
one component instance in the assembly, but some of them consider the state of the
provide and use ports linked to the instance, and therefore depend on the state of the
whole assembly.
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action
finished

action
finished

Figure 5.5: Illustration of the rule Endδθ.

Firing transitions

π ∈ Πc ∩M ∀(j, pu, i, pp) ∈ L, active(j, pu) =⇒ active(i′, pp)
Firebπ〈(I ∪ {i}, L), R〉 〈(I ∪ {i′}, L), R〉

where

� i = (id, c, b ·Q,M)

� i′ = (id, c, b ·Q,M∪ {(π′, b′, D) ∈ Θ | π′ = π ∧ b′ = b} \ {π})

Intuitively, when a place holds a token, its outgoing transitions in the current be-
havior of the component may be �red simultaneously. This is represented by removing
the token on the place, and placing tokens on each of these transitions instead. The
second condition prevents the rule from being applied in situations where it would
de-activate a provide port (in particular, one bound to a group containing π) that is
being used by another component. This rule is illustrated by Figure 5.4.

Ending transition

θ = (π, b,D) ∈ Θc ∩M δ ∈ D
Endδθ〈(I ∪ {i}, L), R〉 〈(I ∪ {i′}, L), R〉

where

� i = (id, c, Q,M)

� i′ = (id, c, Q,M∪ {(θ, δ)} \ {θ})
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provided

provided

Figure 5.6: Illustration of the rule Reachδ.

This rule represents the end of a transition by transferring the token from the
transition to one of its ending. The choice of the transition ending (in the case
where the transition is a switch, i.e., has multiple endings) is non-deterministic. This
non-determinism represents the fact that a transition may have various outcome,
depending on parameters (e.g., user input, time) that are not speci�ed in the semantic
model. This rule is illustrated by Figure 5.5.

Entering place

δ ∈ ∆ Eδ ⊆M ∀pu, P l(δ) ∈ Gr(pu) =⇒ provided(i, pu) ∧ allowed(i, pu)
Reachδ〈(I ∪ {i}, L), R〉 〈(I ∪ {i′}, L), R〉

where

� Eδ = {
(
(πsource, b,D), δ

)
| (πsource, b,D) ∈ Θc∧δ ∈ D}, i.e., the set of transitions

ending that reach the station δ

� i = (id, c, Q,M)

� i′ = (id, c, Q,M∪ {Pl(δ)} \ Eδ)

and

� provided(i, pu) ≡ ∃(i, pu, j, pp) ∈ L, active(j, pp), indicating that the require-
ment of the use port pu is satis�ed,

� allowed(i, pu) ≡ ∀(i, pu, j, pp) ∈ L, refusing(j, pp)∧¬ active(i, pu) =⇒ ¬ active(i′, pu),
ensuring that the change does not initiate usage to a port that is currently re-
fusing it.
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If all the transition endings that reach a station hold a token, and if the use port
conditions are satis�ed, the tokens can be removed from the transition endings and a
token added to the place to which the station is attached. Intuitively, this represents
a synchronization point between multiple transitions before reaching a place. This
rule is illustrated by Figure 5.6.

Finishing behavior

M⊆ Πc ∀(π, b′, D) ∈ Θ, b′ = b : π 6∈ M
Finishb〈(I ∪ {i}, L), R〉 〈(I ∪ {i′}, L), R〉

where

� i = (id, c, b ·Q,M)

� i′ = (id, c, Q,M)

If a component has tokens only on places that have no outgoing transitions active
in the current behavior, then this behavior is discarded. This leads to a modi�cation
of the current behavior, and therefore of the active transitions of the component.

5.2.4.3 Recon�guration instructions

Lastly, we present the semantic rules describing the instructions of the recon�guration
language. Each of these rules depends on the �rst instruction in the recon�guration
program, and describes how the instances of the assembly or their links are modi�ed
as a result.

Add component instance

ι = add(id, c) ¬∃(id, c′, Q,M) ∈ I
Add〈(I, L), ι ·R〉 〈(I ∪ {(id, c, [], {πinitc})}, L), R〉

The instruction add(id, c) creates a component instance of type c, provided that the
identi�er is not already attached to another instance in the assembly. The created
instance has an empty behavior queue, and its initial place holds a token.

Delete component instance

ι = del(id) i = (id, c, Q,M) ∈ I ¬∃(i1, pu, i2, pp) ∈ L, i = i1 ∨ i = i2
Del〈(I, L), ι ·R〉 〈(I \ {i}, L), R〉

The instruction del(id) deletes a component identi�ed by id from the assembly, pro-
vided that the component is not connected to any other.
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Connect ports

ι = con(id1, pu, id2, pp) {i1, i2} ⊆ I i1 6= i2 ¬∃(i1, pu, i′, pp′) ∈ L
Con〈(I, L), ι ·R〉 〈(I, L ∪ {(i1, pu, i2, pp)}), R〉

where i1 is an instance of type c1 identi�ed by id1, and i2 is an instance of type c2

identi�ed by id2, such that pu ∈ Puc1 and pp ∈ Ppc2 .
The instruction con(id1, pu, id2, pp) adds a connection between the use port pu and

provide port pp of two distinct instances identi�ed by id1 and id2. Use ports can be
connected to at most one provide port, therefore the instruction is executed only if
the port pu is not already connected.

Disconnect ports

ι = dcon(id1, pu, id2, pp) ¬ active(i1, pu)
Dcon〈(I, L), ι ·R〉 〈(I, L \ {(i1, pu, i2, pp)), R〉

where i1 is an instance of type c1 identi�ed by id1, and i2 is an instance of type c2

identi�ed by id2, such that pu ∈ Puc1 and pp ∈ Ppc2 .
The instruction dcon(id1, pu, id2, pp) removes the connection between the ports pu

and pp of the components identi�ed by id1 and id2. This can only happen when the
use port pu is inactive.

Pushing behavior

ι = pushB(id, b) b ∈ Bc

PushB〈(I ∪ {i}, L), ι ·R〉 〈(I ∪ {i′}, L), R〉

where

� i = (id, c, Q,M)

� i′ = (id, c, Q · b,M)

The instruction pushB(id, b) corresponds to an asynchronous behavior request di-
rected at the component identi�ed by id. That request is added to the behavior
queue of the component.

Waiting

ι = wait(id) (id, c, [],M) ∈ I
Wait〈(I, L), ι ·R〉 〈(I, L), R〉

The instruction wait(id) acts as a synchronization barrier until the component
identi�ed by id has executed all the behavior requests submitted to it.
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5.3 Performance Model

This section describes a performance model for Concerto recon�gurations. It relies
on the formal semantics of Concerto presented in Section 5.2. Its goal is to estimate
the total execution time of a recon�guration given (i) the recon�guration program,
(ii) the initial assembly, and (iii) the duration of the transitions in each instance.
The computed result is the time required to execute the critical path in the recon-
�guration, i.e., the longest sequence of events that has to be performed to complete
the recon�guration. This corresponds to the execution time of the recon�guration in
the optimal case where all transitions are �red as early as possible, and there is no
restriction on the number of transitions that can be executed in parallel.

The main element of the performance model is a weighted oriented dependency
graph (V,A) with A a multi-set over V ×R+

0 ×V . Intuitively, the vertices of the graph
represent events occurring during the execution (e.g., the activation of a port, the
execution of an instruction) and the arcs represent the dependencies between events,
e.g., the fact that the execution of a behavior may only start after the corresponding
pushB instruction has been executed. Arcs that correspond to the execution of a
transition are weighted with a positive value encoding the duration of the transition.
All other arcs have a weight of 0. The critical path corresponds to the longest (in terms
of weights) path between the vertex representing the beginning of the recon�guration
and the vertex representing its end.

Cycles in the dependency graph correspond to deadlocks in the recon�guration.
In this case, the performance analysis correctly indicates that the recon�guration will
not end, as the longest path in the graph has in�nite length. However, some other
types of non-progressing states (e.g., where a use port has become deactivated before
being needed) are not captured: a �nite critical path only indicates that there exists
a terminating execution of the recon�guration, but it does not guarantee termination
of all executions.

5.3.1 Assumptions

For the purpose of performance estimation, the outcome and execution time of actions
must be known, therefore we assume that:

� all transitions have exactly one ending (no switches);

� transition durations are given as values of R+
0 by a function time(id, θ).

Transition durations depend on an instance identi�er, so that the execution of a simi-
lar transition may require di�erent times in various instances (as a result of hardware
discrepancies or data locality, for example). In practice, these durations are often
estimations provided by system administrators.
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This performance model is applicable to many commonly occurring recon�gura-
tion scenarios, however it is not meant to be a complete analysis tool. In particular,
it is restricted to:

� assemblies such that all groups have at most one entrance and one exit (i.e.,
places connected by a transition to another place outside of the group) in each
behavior;

� recon�gurations that may lead to at most one activation and one deactivation
of a given port.

The �rst condition implies that the activation of a port matches the activation of a
single place (the entrance to the group of the port) and the deactivation of that port
matches the deactivation of the exit to the same group. In the following, we refer to
the entrance and exit places of a group G respectively in(G) and out(G).

The second condition ensures that the port provision condition required to enter
places can be mapped to an event in the dependency graph. For more complex recon-
�guration scenarios, where ports have multiple periods of activation, it is possible to
split the recon�guration script in multiple parts and analyze them separately, how-
ever this may require the insertion of global synchronization points, with an e�ect on
performance.

In practice these assumptions are compatible with many real cases of recon�gu-
ration, such as those presented in the evaluation of this work (Chapter 6).

5.3.2 Recon�guration dependency graph

The dependency graph is constructed by Algorithm 1, which considers each instruc-
tion of the recon�guration program iteratively and extends the graph accordingly.
Besides the graph D = (V,A) being constructed, the algorithm maintains the follow-
ing auxiliary variables:

� a vertex vsync ∈ V that corresponds to the latest synchronization barrier (be-
ginning of the program or last blocking instruction wait or dcon);

� a function tokensΠ that maps identi�ers id to the places that will hold tokens
when the last behavior of the instance identi�ed by id has been executed;

� a function endv that maps identi�ers id to the vertex in the graph that represents
the end of the execution of the last behavior of the instance identi�ed by id.

We denote by f⊥ the function that is unde�ned everywhere, and by f [y := v] the
functional update of f , i.e., the function that maps y to v, and all other values x to
f(x).

The construction of the graph, as described in Algorithm 1, begins with a vertex
vsource that represents the beginning of the execution of the recon�guration program.
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Data: assembly (I, L), recon�guration ι1 · ι2 · . . . · ιn
Result: graph (V,A)

1 V ← {vsource} ;
2 A← ∅ ;
3 tokensΠ , endv ← f⊥ ;
4 for (id, c, Q,M) ∈ I do
5 tokensΠ ← tokensΠ [id :=M] ;
6 endv ← endv [id := vsource] ;
7 for p ∈ Pu

c ∪ Pp
c do

8 V ← V ∪ {vactid,p, v
deact
id,p } ;

9 end

10 end
11 for (i, pu, j, pp) ∈ L do
12 A← A ∪ {(vactidj ,pp

, 0, vactidi,pu
), (vdeactidi,pu

, 0, vdeactidj ,pp
)} ;

13 end
14 vsync ← vsource ;
15 for i from 1 to n do
16 match ιi with
17 case wait(id) do
18 V ← V ∪ {vwaiti } ;
19 A← A ∪ {(vsync, 0, vwaiti ), (endv(id), 0, vwaiti )} ;
20 vsync ← vwaiti ;
21 case con(id1, pu, id2, pp) do
22 A← A ∪ {(vsync, 0, vactid1,pu

),(vactid2,pp
, 0, vactid1,pu

),(vdeactid1,pu
, 0, vdeactid2,pp

)} ;
23 case dcon(id1, pu, id2, pp) do
24 V ← V ∪ {vdconi } ;
25 A← A ∪ {(vsync, 0, vdconi ), (vdeactid1,pu

, 0, vdcon)} ;
26 vsync ← vdconi ;
27 case pushB(id, b) do
28 extendGraph(id, b) ;
29 end

30 end

31 end
32 V ← V ∪ {vsink} ;
33 for (id, c, Q,M) ∈ I do
34 A← A ∪ {(endv(id), 0, vsink)} ;
35 end
36 A← A ∪ {(vsync, 0, vsink)} ;
37 return (V,A) ;

Algorithm 1: The construction of the dependency graph.
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The auxiliary function endv initially maps each component identi�er to vsource, while
the function tokensΠ initially maps each identi�er to the marked places M of the
corresponding instance, in the initial state of the assembly I. Vertices representing
the activation and deactivation of each port are also added to the graph. The graph
is then extended, by considering instructions in the order in which they occur.

1 Procedure extendGraph(id, b) is
2 let c be the type of the instance identi�ed by id V ← V ∪ {vsourceid,b , vsinkid,b } ;
3 A← A ∪ {(end(id), 0, vsourceid,b ), (vsync, 0, vsourceid,b )} ;
4 for π ∈ Πc do
5 V ← V ∪ {venterπ , vleaveπ } ;
6 A← A ∪ {(venterπ , 0, vleaveπ )} ;
7 if π ∈ tokensΠ (id) then
8 A← A ∪ {(vsourceid,b , 0, venterπ )} ;
9 end

10 end
11 for θ = (π, b′, {δ}) ∈ Θ such that b′ = b do
12 V ← V ∪ {v�reθ } ;
13 A← A ∪ {(vleaveπ , 0, v�reθ ), (v�reθ , time(id, b), venterPl(δ))} ;
14 end
15 for pp ∈ Pp

c do
16 A← A ∪ {(venterin(Gr(pp),b), 0, v

act
id,pp

), (vdeactid,pp
, 0, vleaveout(Gr(pp),b))} ;

17 end
18 for pu ∈ Pu

c do
19 A← A ∪ {(vactid,pu

, 0, venterin(Gr(pu),b)), (v
leave
out(Gr(pu),b), 0, v

deact
id,pu

)} ;
20 end
21 remove elements of V and A that are not reachable from vsourceid,b ;
22 tokensΠ ← tokensΠ [id := {π | venterπ ∈ V ∧ ¬∃(π, b′, D), b′ = b}] ;
23 endv ← endv[id := vsinkid,b ] ;
24 for π ∈ tokensΠ (id) do
25 A← A ∪ {(venterπ , 0, vsinkid,b } ;
26 end

27 end

Algorithm 2: The construction of the dependency sub-graph for each instruc-
tion.

Wait Given an instruction wait(id), the graph is extended with a unique vertex
vwait, representing the synchronization event. An arc is added from the vertex vsync to
vwait (synchronization occurs after the previous synchronization barrier) and another
from endv(id) to vsync (synchronization occurs after the component identi�ed by id
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has executed all its behavior requests). The auxiliary variable vsync, which represents
the last synchronization point, is updated.

Connection Given an instruction con(id1, pu, id2, pp), edges are added to represent
the order in which the connected ports can be (de)activated, as well as an edge
to represent the fact that the activation of the use port cannot occur before the
connection, i.e., the last synchronization point represented by vsync.

Disconnection An instruction dcon(id1, pu, id2, pp) is a synchronization point, and
is therefore treated similarly to wait, except that the synchronization condition is the
deactivation of the port pu represented by vdeactid1,pu

.

Creation and deletion of components The creation or deletion of a control
component does not measurably contribute to the execution time. Indeed, any action
to perform on a given control component is achieved through behaviors in Concerto,
and the creation and the deletion only refer to instances of control components. Fur-
thermore, these are not blocking operations: deletion requires the component to be
disconnected, but this is a well-formedness condition that can be checked statically.
Therefore these two instructions are not taken into account during the construction
of the dependency graph (the list of components in the assembly should also include
those created during the recon�guration).

Push behavior The case for the instruction pushB(id, b) is handled in the proce-
dure extendGraph (Algorithm 2). Given a component identi�er id and a behavior b,
extendGraph extends the graph with vertices representing the events occurring during
the execution of that behavior. The construction of this sub-graph depends on the
component instance identi�ed by id and the behavior b, but also the set of places
tokensΠ (id), i.e., the places that hold tokens at the beginning of this execution of b.

Two vertices vsourceid,b and vsinkid,b are added to represent the beginning and end of
the behavior. The former is connected to endv(id) to ensure that behaviors are
executed in the order in which they are requested, and to vsync to ensure that the last
synchronization point is taken into account.

For each place π in the component type, a vertex venterπ representing the place
being entered is added to the graph. If the place holds a token at the beginning
of the behavior b, this vertex is connected to vsourceid,b . Another vertex vleaveπ is also
added, representing the point at which the outgoing transitions are ready to be �red,
after the place has been reached and any provide port bound to that place has been
deactivated.

For each transition θ = (π, b′, {δ}) such that b′ = b, one vertex v�reθ is added,
connected to vleaveπ to encode the fact that the transition may only start after a token
leaves its source place, and to venterPl(δ) to represent its outcome. The latter connection
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is weighted time(i, θ) to represent the time taken by the execution of the action
associated to θ.

For each provide port pp, we consider the group Gr(pp), and in particular the
entrance place in(Gr(pp), b) and exit place out(Gr(pp), b) of that group, under the
behavior b. Two arcs are added. The �rst, from venterin(Gr(pp),b) to v

act
pp , represents the fact

that pp becomes active after a token has been added to the entrance of the group.
The second arc, from vdeactpp to vleaveout(G), represents the fact that the group may be
deactivated only after pp is not in use anymore. Conversely, for each use port pu, two
arcs are added, one from vactpu to venterin(Gr(pu),b), and another from vleaveout(Gr(pu),b) to v

deact
pu .

Note that the sub-graph that was just constructed to describe the event of the
behavior b may not be connected if some places and transitions are not reachable in
a given behavior and starting con�guration. For this reason, the vertices and arcs
that are not reachable from vsourceid,b are removed. It is then easy to determine the �nal
places of the behavior and update tokensΠ accordingly. The vertices corresponding
to the �nal places are connected to vsinkid,b , denoting the end of the behaviors when all
�nal places are reached.

5.3.3 Example
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Figure 5.7: Concerto assembly composed of one instance of each component type of
Figure 5.1. The two instances are in their deployed state.
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Figure 5.8: Dependency graph corresponding to the recon�guration program in List-
ing 5.2 (on page 88) applied to the assembly in Figure 5.7. Each sub-graph is repre-
sented with the color corresponding to its behavior. Note that the use port backup_in
of instance db is assumed to be provided.
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Figure 5.8 shows the dependency graph corresponding to the recon�guration pre-
sented in Listing 5.2 (on page 88) applied to the assembly in Figure 5.7. Each
color of the colored vertices correspond to the sub-graph generated by a call to
extendGraph(pushB(id, b)) for some identi�er id and behavior b. The color of the
sub-graphs matches the representation of the behavior b in Figure 5.7. The graph
also contains a vertex vwait generated by extendGraph(wait(proxy)), and vertices
vsource and vsink generated in the initial phase of the graph construction. For vertices
corresponding to transitions, the weight is indicated. All other vertices have a weight
of 0.

5.4 Behavioral Interfaces

Concerto component types expose detailed information about the life-cycle of a soft-
ware module. However, from the perspective of the recon�guration developer, a part
of this information is irrelevant and is detrimental to good separation of concerns.
For instance, parallelism within the component, or the detailed set of transitions exe-
cuting is irrelevant. What is important however are the set of behaviors which can be
executed at any given time, which use or provide ports are a�ected by the execution
of a behavior (and in which order) and which use or provide ports are active when
the component is stable, i.e., not executing any behavior.

Behavioral interfaces are a view generated for a Concerto component type which
expose only this useful information to the recon�guration developer. It can also
be viewed as a contract/interface, which component types can implement (distinct
component types can have the same behavioral interface). Two component types
implementing the same interface are guaranteed to behave in the same way from the
point of view of the recon�guration developer.

5.4.1 De�nition

Given a Concerto component type, its behavioral interface contains the following
information: its ports, its behaviors, and a state-machine composed of a set of stable
states as states and a set of behavior executions as transitions. Intuitively, stable
states correspond to a state that can be reached by an instance of the component
type by executing a given sequence of behaviors, starting from the initial place. They
are characterized by which use or provide ports are active and which behaviors can
be executed after reaching them. Behavior executions correspond to the execution of
a given behavior, which leads from a stable state to another stable state. They are
de�ned by the origin and destination stable states, the associated behavior and the
set of partially ordered port-related events (activation or deactivation of a port) which
occur during the execution of the behavior. Note that the order is partial because if
there are parallel transitions within the component, the order in which port-related
event occur might depend on the execution time of the transitions.
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Figure 5.9: Behavioral interfaces corresponding to the component types presented
in Figure 5.1 (on page 81). Octagons represent stable states while colored arrows
represent behavior executions. Stable states are tagged with their active ports, while
behavior executions are tagged with a partial order for their port events. Two events
on consecutive lines are considered to happen at the same time, while a < indicates
that all events above happen before all events below. Note that in this example,
the orders happens to be total. A act (resp. dea) event corresponds to the activa-
tion (resp. deactivation) of a use or provide port. Numbers in circles are only for
referencing states in the text and do not bear any meaning.

For example, Figure 5.9 shows behavioral interfaces for the component types of
Figure 5.1 (on page 81). In Db, stable state 1 is the initial state, which in practice
corresponds to having one token in place uninstalled. Note that it is possible to go
back to this state by executing behaviors install, backup and uninstall any number
of times in this order. In this state, no ports are active. Stable state 2 is reached by
executing install from the initial state. In this state, ports sql_write and sql_read
are active. In practice, it corresponds to a token being in place running. A behavior
execution of behavior install allows to go from stable state 1 to stable state 2. During
this execution, four events happen: �rst, use port backup_in starts to be used, then
it stops to be used, and then provide ports sql_write is activated at the same time
as provide port sql_read.

Formal description Formally, a behavioral interface is de�ned by a tuple of 6
elements (Σ, B, Pu, Pp,
, E). Σ is a set of stable states, B is a set of behaviors, Pu
is a set of use ports and Pp is a set of provide ports. Note that B, Pu and Pp are
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exactly identical to the elements of the same name in the tuple of a component type.

 ⊆ Σ × (Pu ∪ Pp) is a binding relation between stable states and ports, de�ning
which ports are active in each state. Finally, E ⊆ Σ×B×Ev×Σ is a set of behavior
executions corresponding of a source state, a behavior, a set of ordered events and a
destination state. A set of ordered events in Ev is de�ned as a tuple (Ωε,4ε) where
Ωε ⊆ {act, dea}× (Pu ∪ Pp) is a set of events and 4ε⊆ Ωε×Ωε is a partial order over
these events.

5.4.2 Generating a behavioral interface

In this section, we present an algorithm to generate the behavioral interface of a
Concerto component type. This algorithm is a proof of concept and it is conceived
with clarity in mind, as opposed to optimization in terms of complexity. It is also
restricted to component types which do not have parallel exit or entry points in groups
(i.e.,, for each group and each behavior, there is only one place which when receiving
a token causes the group to become active and only one place which when losing a
token causes the group to become inactive).

Algorithm 3 contains the main function GetInterface as well as two auxiliary
functions, ExploreState and ExploreBehavior. Other auxiliary functions are given
in Algorithms 4 and 5. We describe the algorithm in a top-down fashion, starting
with function GetInterface.

Notation In the following, tuples usually denoted (e1, . . . , en) in mathematics
are denoted 〈e1, . . . , en〉 to disambiguate with function calls.

5.4.2.1 Description of the algorithm

GetInterface The main function, GetInterface, takes as input a component type
c and returns a tuple 〈Σ, E〉 where Σ is the set of stable states of its behavioral
interface and E is its set of behavior executions. The main idea of the algorithm is to
explore the possible behavior executions starting from known stable states to discover
new stable states, until no more stable states can be discovered. We start with the
one stable state common to all component types: the one corresponding to a token
being in the initial place of the internal-net. Line 2 initializes the explored states to an
empty set, the discovered behavior executions to an empty set, and the set of states to
explore as containing the single set {πinit}. Remind that stable states correspond to
places holding tokens in the original component type. In this algorithm, stable states
are encoded by the set of places holding a token they correspond to. Line 3 is the main
loop of the algorithm and consists in exploring stable states (i.e., �nding the behavior
executions starting from that state) as long as the set of states to explore is not empty.
Function ExploreState does that exploration of a state. ExploreState (σ, c) returns
a tuple containing the set of newly discovered stable states and the set of newly
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1 Function GetInterface(c = 〈Π, πinit,∆, P l,Θ, B, Pu, Pp, Gr〉):
2 Σ← ∅ ; E ← ∅ ; Σto_explore ← {{πinit}}
3 while Σto_explore is not empty do
4 extract σ from Σto_explore

5 〈Σdiscovered, Ediscovered〉 ← ExploreState (σ, c)
6 Σ← Σ ∪ {σ}
7 Σto_explore ← Σto_explore ∪ Σdiscovered \ Σ
8 E ← E ∪ Ediscovered

9 end
10 return 〈Σ, E〉
11 AuxFunction ExploreState(σ,c = 〈Π, πinit,∆, P l,Θ, B, Pu, Pp, Gr〉):
12 Σdiscovered ← ∅ ; Ediscovered ← ∅
13 explored_behaviors← ∅
14 for 〈πsource, b,D〉 in Θ do
15 if πsource ∈ σ and b is not in explored_behaviors then
16 results← ExploreBehavior (b, σ, c)
17 for 〈final_places, events〉 in results do
18 Σdiscovered ← Σdiscovered ∪ {final_places}
19 Ediscovered ← Ediscovered ∪ {〈σ, b, events, final_places〉}
20 end
21 explored_behaviors← explored_behaviors ∪ {b}
22 end

23 end
24 return 〈Σdiscovered, Ediscovered〉
25 AuxFunction ExploreBehavior(b,σ,c = 〈Π, πinit,∆, P l,Θ, B, Pu, Pp, Gr〉):
26 choices← InitSwitchChoices (b, c)
27 results← ∅
28 for choice in choices do
29 results← results ∪ {ExploreBehaviorChoice (choice, b, σ, c)}
30 end
31 return results

Algorithm 3:Main function GetInterface to get a behavioral interface from
a component type along with auxiliary functions ExploreState which �nds
possible behavior executions from a given state, and ExploreBehavior which
computes the execution of a given behavior from a given state.
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Figure 5.10: Execution of the main loop of function GetInterface of Algorithm 3
on component type Db presented in Figure 5.1 (on page 81), eventually obtaining
the behavioral interface shown in Figure 5.9. The number below each sub-�gure
corresponds to the number of iterations of the loop which have been performed.

discovered behavior executions while exploring state σ. In the main loop, a state to
explore is extracted (line 4), explored (line 5) and marked as explored (line 6). The
set of states to explore is populated with the newly discovered states, minus those
already explored (line 7) and the set of discovered behavior executions is populated
by the newly discovered ones (line 8).

Figure 5.10 illustrates how the behavioral interface of component type Db pre-
sented in Figure 5.1 (on page 81) is constructed by showing the state machine de-
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scribed by Σ∪Σto_explore and E at the beginning of each iteration of the loop. Notice
that this algorithm returns the set of stable states and the set of behavior executions,
but, for the sake of conciseness, not the binding relation between stable states and
ports. Because stable states are encoded by the set of places holding a token they
represent, this is easy to deduce from Σ itself and is left as exercise to the reader.

ExploreState Recall that ExploreState is a function that takes as input a stable
state σ and the description of a component type c and returns a tuple containing
the set of newly discovered stable states and the set of newly discovered behavior
executions while exploring state σ. This is done by exploring each behavior which
has at least one transition outgoing from one place in stable state σ. To do this, line
14 loops over the transitions in Θ and if its source place is in σ and the behavior
has not yet been explored (line 15), a call is made to function ExploreBehavior

(line 16) which, given a behavior, a starting state and a component type returns the
set of possible executions of this behavior (there can be multiple executions when
there are switches: the events caused by the execution of a behavior might not be
the same depending on which branch of a switch is taken). Each behavior execution
in the returned set is encoded as a tuple containing the stable state reached after
the execution (encoded as a set of places) and a partially ordered set of events. The
loop from line 17 to line 20 updates the sets of discovered stable states and behavior
executions and the behavior just explored is marked as such line 21.

ExploreBehavior Recall that ExploreBehavior takes as input a behavior, a start-
ing state and a component type and returns the set of possible executions of this
behavior encoded as a tuple containing the stable state reached after the execution
and a partially ordered set of events. This function only iterates through the possi-
ble combination of choices that can be made in switches (i.e., which output station
the token goes to when leaving the transition). An example of choice mapping is
illustrated by Figure 5.11. The list of possible choice mappings is computed by func-
tion InitSwitchChoices (de�ned in Algorithm 5) on line 26, and the loop from
line 28 to line 30 goes through each of them. For each choice possibility, function
ExploreBehaviorChoice (de�ned in Algorithm 4) is used to compute the behavior
execution (encoded as a tuple containing the stable state reached after the execution
and a partially ordered set of events). This behavior is added to the list results which
is returned at the end of the loop.

Partially ordered event sets Before de�ning the ExploreBehaviorChoice func-
tion, we de�ne a few primitives to be used to construct partially ordered event sets.
We de�ne an event as an element of {act, dea}×〈Pu ∪ Pp〉 (where act corresponds to
the activation of a port and dea to the deactivation of a port).

Recall that a set of ordered events is de�ned as a tuple 〈Ω,4〉 where Ω ⊆
{act, dea} × 〈Pu ∪ Pp〉 is a set of events and 4⊆ Ω × Ω is a partial order over these
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Figure 5.11: Illustration of a choice mapping as produced by function
InitSwitchChoices of Algorithm 4 on component type Db presented in Figure 5.1
(on page 81), with initial stable state {uninstalled} and behavior install. In this
mapping, transition allocate maps to the station of its only transition ending. The
same goes for transitions conf1, conf2, run and restore. In the case of transition
sw, among two possible stations, it is mapped to the one of place sw1.

events.
We de�ne:

Nothing := 〈∅, ∅〉

as the empty partially ordered events set.
Given an event ω ∈ Ω, we de�ne:

Ev (ω) := 〈{ω} , ∅〉

which gives a partially ordered events set containing this single event.
Given n events ω1 . . . ωn in Ω, we de�ne:

Sim {ω1, . . . , ωn} :=

〈
{ω1, . . . , ωn} ,

n⋃
i=1

n⋃
j=i+1

{(ωi, ωj), (ωj, ωi)}

〉
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which gives a partially ordered events set containing events ω1 . . . ωn with all of them
considered as happening at the same time (they are all equal for 4).

Given two partially ordered sets s1 = 〈Ω1,41〉 and s2 = 〈Ω2,42〉, we de�ne:

Seq (s1, s2) :=

〈
Ω1 ∪ Ω2,41 ∪ 42 ∪

⋃
〈ω1,ω2〉∈Ω1×Ω2

〈ω1, ω2〉

〉

which gives a partially ordered events set corresponding to the union of s1 and s2

with, in addition, all events of s1 being ordered before all events of s2.
Finally, given n partially ordered sets s1 = 〈Ω1,41〉 , . . . , sn = 〈Ωn,4n〉, we de�ne:

Par {s1, . . . , sn} := 〈Ω1 ∪ Ω2,41 ∪ 42〉

which gives a partially ordered events set corresponding to the union of s1 and s2

with no additional ordering (allowing events of s1 and sn to occur in parallel).

ExploreBehaviorChoice The ExploreBehaviorChoice function is de�ned in Al-
gorithm 4. It takes as input a choice map choice (associating each transition to one
output station of this transition), a behavior b, a starting stable state σ and a com-
ponent type c, and returns the behavior execution (encoded as a tuple containing the
stable state reached after the execution and a partially ordered set of events). This
function simulates the execution of the behavior in a component instance of type c
with tokens starting in each place contained in σ while remembering at each step
when use and provide ports were activated or deactivated. However, unlike an actual
execution of Concerto's semantics, it does not make any assumption on the order in
which semantic rules are applied. In order to keep track of the events during the
execution, when a place is reached during the simulation, the partially ordered set of
events that happened during the execution so far is associated to the place.

Lines 2 to 10 consist in initializing variables. act_places is the set of active places
in the simulation and is initialized to contain the places contained in σ. act_stations
is the set of active stations, corresponding to when there is a token in the transition
ending associated to this station of all the incoming transitions of the station for
a given behavior. final_places is the set of place holding a token which have no
outgoing transitions of the given behavior. At the end of the simulation, this set cor-
responds to the destination stable state of the behavior execution. station_sources
is a dictionary associating to each station the set of origin places of the transitions
leading to this station. Originally, each station is associated to an empty set (lines 5
to 7) and the mapping is updated during the simulation. event_logs is a dictionary
associating each place to the partially ordered set of events that happened before
arriving to that place. Originally, each place is associated to Nothing, i.e., the empty
partially ordered events set (lines 8 to 10), and the mapping is updated during the
simulation. station_counts is a dictionary used to keep track of how many more
tokens a station needs to receive before tokens can be moved from transition endings
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1 AuxFunction ExploreBehaviorChoice(choice,b,σ,c = 〈Π, πinit,∆, P l,Θ, B, Pu, Pp, Gr〉):
2 act_places← σ ; act_stations← ∅ ; final_places← ∅
3 station_sources← EmptyDictionary ; event_logs← EmptyDictionary

4 station_counts← InitStationCounts (b, c)
5 for δ in ∆ do

6 station_sources [δ]← ∅
7 end

8 for π in σ do

9 event_logs [π]← Nothing

10 end

11 while act_places is not empty or act_stations is not empty do

12 if act_places is not empty then

13 π ← extract one from act_places
14 out_trans← {〈πsource, b′, D〉 | b′ = b ∧ πsource = π}
15 if out_trans is empty then

16 final_places← final_places ∪ {π}
17 else

18 deact_ports← PlacePorts (π, c)
19 for θ in out_trans do
20 δ ← choice [θ]
21 deact_ports← deact_ports \ PlacePorts (Pl (δ) , c)
22 station_counts [δ]← station_counts [δ]− 1
23 station_sources← station_sources ∪ {π}
24 if station_counts [δ] = 0 then

25 act_stations← act_stations ∪ {δ}
26 end

27 end

28 event_logs [π]← Suc 〈event_logs [π] , Sim {〈dea, p〉 | p ∈ deact_ports}〉
29 end

30 end

31 if act_stations is not empty then

32 δ ← extract one from act_stations
33 π ← Pl (δ)
34 act_ports← PlacePorts (π, c)
35 for πsource in station_sources [δ] do
36 act_ports← act_ports \ PlacePorts (πsource, c)
37 end

38 trans_events← Par {event_logs [πsource] | πsource ∈ station_sources [δ]}
39 act_events← Sim {〈act, p〉 | p ∈ act_ports}
40 event_logs [π]← Suc (trans_events, act_events)

41 end

42 end

43 return 〈final_places, Par {event_logs [π] | π ∈ final_places}〉
Algorithm 4: Auxiliary function ExploreBehaviorChoice which computes
the execution of a behavior given a starting state and a choice of output station
for each transition (used in the case of a switch).
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1 AuxFunction InitStationCounts(b,c = 〈Π, πinit,∆, P l,Θ, B, Pu, Pp, Gr〉):
2 station_counts← EmptyDictionary

3 for δ in ∆ do
4 station_counts [δ]← 0
5 end
6 for 〈πsource, b′, D〉 in Θ do
7 if b′ = b then
8 for δ in D do
9 station_counts [δ]← station_counts [δ] + 1

10 end

11 end

12 end
13 return station_counts
14 AuxFunction InitSwitchChoices(b,c = 〈Π, πinit,∆, P l,Θ, B, Pu, Pp, Gr〉):
15 choices← [EmptyDictionary]
16 for θ = 〈πsource, b′, D〉 in Θ do
17 if b′ = b then
18 new_choices← []
19 for δ in D do
20 for choice in choices do
21 new_choice← choice
22 new_choice [θ]← δ
23 new_choices← new_choices+ [new_choice]
24 end

25 end
26 choices← new_choices
27 end

28 end
29 return choices

30 AuxFunction PlacePorts(π,c = 〈Π, πinit,∆, P l,Θ, B, Pu, Pp, Gr〉):
31 ports← ∅
32 for p in Pu ∪ Pp do
33 if π is in Gr (p) then
34 ports← ports ∪ {p}
35 end

36 end
37 return ports

Algorithm 5: Auxiliary functions which are used by functions in Algorithms 3
and 4 to initialize variables. InitStationCounts returns a dictionary asso-
ciating to each station the number of incoming transitions of a given behav-
ior, i.e., the number of tokens needed to enter a place through this station.
InitSwitchChoices returns a list of all possible choices for switches of a given
behavior, encoded by dictionaries which each associate one output station to
each transition of a given behavior. PlacePorts returns the list of ports asso-
ciated to a group containing a given place.
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to a place. It is initialized by using function InitStationCounts de�ned in Algo-
rithm 5. Originally, each station is associated to its number of incoming transitions,
and this number is decreased during the simulation when a token is put in a relevant
transition ending. When it reaches 0, there are enough tokens.

Lines 11 to 42 consist of a loop simulating the semantic rules of Concerto in a
simpli�ed way. Lines 12 to 30 treat the case of active places, and lines 31 to 41 treat
the case of active stations.

If an active place exists, it is extracted from the set of active places (line 13).
If it has no outgoing transitions for the given behavior, it is added to the set of
�nal places (lines 14 to 16). Otherwise, the execution of the semantic rules allowing
the token to go from the place to the transition endings of its outgoing transitions is
simulated. Line 18, variable deact_ports is initialized with the set of ports containing
the current place in their group. This set is �ltered in the following instructions to
end up being the set of ports which are deactivated when a token leaves the place.
Lines 19 to 27, for each transition, the ports which are still active in the destination
place are removed from deact_ports, the current place is added to the set of station
sources of the destination station (according to the choice mapping), the count of that
station is decremented, and if it reaches 0 the station is added to the set of active
stations. Finally, line 28, the set of deactivated ports is known, so the simultaneous
deactivation of these ports is added to the partially ordered events set memorized for
the current place.

If an active station exists, it is extracted from the set of active stations (line 32).
Then, the set of activated ports when entering the place this station is attached to,
act_ports, is determined by listing all the ports with the given place in their group
(line 34) and removing the ports which had at least one of the source places of the
station in their group (lines 35 to 37). Finally, the partially ordered events set of this
place is de�ned as the sequence of two sets of events: the parallel execution of the
sets of events of the origin places and the simultaneous execution of the activation of
the ports in the act_ports set.

Finally, a tuple is returned, consisting of the set of �nal places (corresponding to
the stable state reached by the simulated behavior execution) and of the partially
ordered events set consisting of the events occurring while reach each of the places,
in parallel.

5.4.2.2 Discussion

This algorithm is a proof of concept conceived for clarity, and it could be improved.
In terms of complexity for example, some computations are done multiple times like
the calls to PlacePorts, which could be pre-computed, or the iteration over all edges
to �nd the outgoing transitions of a place, which could be made more e�cient by
using appropriate data structures. However, this algorithm is polynomial in the size
of all the sets composing component type c, with one exception: ExploreBehavior
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makes an exponential number of calls to ExploreBehaviorChoice with respect to the
number of switches in the considered behavior. However, we argue that the number
of switches in a component type is meant to remain low.

5.5 Discussion

Expressivity Concerto is a strict super-set of Madeus, in the sense that any Madeus
assembly can be created in Concerto. To that end, a Concerto component type is
created for each Madeus component in the assembly. Each component has a single
behavior deploy, and the internal-nets would be similar, with some additional dummy
places or transitions to account for the fact that in Madeus, use ports are bound to
transitions and not places or groups of places. Then, a recon�guration program can
be generated to create one instance of each component type, connect the ports like
they are connected in the Madeus assembly and push the deploy behavior in each
component instance.

However, Concerto has a much broader expressiveness compared to Madeus. First,
a paradigm change allows not to �forget� the modules once deployed, but to keep track-
ing their current state in their life-cycle and recon�gure them. In each component,
behaviors correspond to di�erent local recon�gurations that can be applied to a given
module, depending on its current state. In order to perform recon�guration, a recon-
�guration language is provided by Concerto to dynamically update the assembly of
components, i.e., the architecture of the overall distributed system, as well as trigger
the recon�guration of individual software modules.

Performance of recon�guration Concerto supports a high level of parallelism
during recon�guration, both at the module level with parallel transitions and at the
assembly level with mostly asynchronous execution of behaviors. The performance
model provided with Concerto allows, with some restrictions on the component types,
to express the total execution time of a recon�guration program as a function of
the execution time of each transition, i.e., of each recon�guration action they are
associated to. In practice, the restrictions on the component types are not problematic
because they either align with usage (e.g., restrictions on groups) or can be easily
worked around if necessary (e.g., by replacing a switch with a single transition going
to the intended place).

Separation of concerns In Concerto, component types are created by module
developers. They are specialists who know the life-cycles of their modules and trans-
lating them to a Concerto component type is quite straightforward. Recon�guration
programs are created by recon�guration developers. They need to understand how
each module of a distributed system can be interacted with, and how modules inter-
act with each other. This is made easier by behavioral interfaces, which expose only
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the information necessary to use the component types in a recon�guration (which
behavior can be executed, in which state the component will be after its execution
and which ports are a�ected). Finally, recon�guration programs are executed by sys-
tem administrators. Each recon�guration program can be simulated (performing the
changes on the assembly without actually executing the actions associated to the tran-
sitions) to ensure that the resulting assembly corresponds to the expectations prior
to the execution of the program. Also, the expected execution time of a recon�gura-
tion program can be broken down to the execution time of individual recon�guration
actions. This can help estimating or bounding it, helping the system administrator
or the autonomic tools to decide whether to execute the recon�guration or not.

Limitations In terms of expressivity, Concerto is designed as a low-level framework
which can be used by recon�guration planning systems to write and execute a recon-
�guration plan. As such, speci�c functionalities such as error handling or cardinality
are not addressed with speci�c features. However, solutions dedicated to these issues
can be built on top of Concerto by generating component types and recon�guration
programs, making use of Concerto features such as switches to model alternative
recon�guration actions in case of error for example.

In terms of performance, the main limitation that we can identify is the wait in-
struction of the recon�guration language, which is global to the whole recon�guration
program. In the case of very large assemblies, one might need for optimal performance
to keep executing recon�guration instructions on a part of the assembly, while the
other part keeps on executing recon�guration instructions. This could be overcome
by changing the language to support multiple independent threads of execution, or
allowing the execution of concurrent recon�gurations.

In terms of separation of concerns, a Concerto component type cannot be provided
as-is without documentation. For example, ports are not typed, and no guarantee
is provided that all dependencies are represented by ports of the component type.
This design allows greater �exibility, but can be detrimental to good separation of
concerns. However, tools with higher-level concepts like typed ports can be made to
generate Concerto component types.

5.6 Conclusion

In this chapter we have presented Concerto, a model for the recon�guration of dis-
tributed systems. Component types are used to model the life-cycles of each module of
distributed systems. Each component type has a set of behaviors, which correspond to
local recon�gurations which can be performed on instances of this component. Using
a recon�guration language, one can write a recon�guration program which creates
or changes an existing assembly by triggering local recon�guration actions for the
modules asynchronously (through their behaviors) while ensuring the coordination
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between the life-cycles of inter-dependent modules.
A full formalization of the model is provided, covering the de�nitions of compo-

nent types, assemblies, recon�guration programs as well as the complete operational
semantics. A performance model is also provided to express the total execution time
of a recon�guration program as a function of the execution time of individual tran-
sitions, i.e., recon�guration actions local to modules. This will be used in Chapter 6
to bound and estimate the total running time thanks to historical data.

Finally, Concerto provides behavioral interfaces, i.e., views of the component types
exposing only the information required by recon�guration developers. They ful�ll two
objectives: �rst, they increase separation of concerns by relieving the recon�guration
developers from having to understand the internals of a component type, and second
they act as a sort of contract, ensuring that replacing a component type with another
sharing the same behavioral interface will not change how it must be handled by
recon�guration programs.
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In the previous chapters, the Madeus deployment model and the Concerto recon-
�guration model were presented. Both models provide mechanisms for parallelism of
deployment and recon�guration actions, while providing performance models to de�ne
the expected level of parallelism precisely. They also target their concepts to di�erent
actors: module developers, recon�guration developers and system administrators.

In Chapter 3 we have identi�ed that one challenge in recon�guration is to reconcile
separation of concerns and performance, in particular because a high parallelism ex-
pressivity is usually detrimental to separation of concerns. This evaluation therefore
focuses on these two points, parallelism and separation of concerns. Two solutions
from the literature are used as comparison points. First, the Aeolus model, for its
state-of-the-art performance and general similarity in terms of component-based ap-
proach. No other solution with the same level of parallelism expressivity o�ers better
separation of concerns in the literature. Second, the Ansible software con�guration
management tool for its wide-spread use in the industry and its unique approach to
parallelism.

Because Concerto is a super-set of Madeus and both models o�er the same levels
of parallelism expressivity, in this chapter we focus on evaluating Concerto. The
examples used throughout the chapter include deployment cases, so everything that
is stated about Concerto also apply to Madeus in these cases. When Madeus has to
be analyzed speci�cally, we mention it explicitly.

In Section 6.1, we introduce an implementation of Madeus and Concerto which
have been used for the experiments which this chapter is based on. In Section 6.2,
we present the synthetic and production use-cases that are used in the rest of the
chapter to perform the evaluation. Then, in Section 6.3, we provide a performance
model for our comparison points, Ansible and Aeolus, and evaluate the performance
model of Madeus and Concerto. Then, we evaluate Madeus and Concerto in terms of
parallelism expressivity (Section 6.4) and separation of concerns (Section 6.5), based
on the previously introduced use-cases. Precise comparisons are drawn with Aeolus
and Ansible. All the experiments presented here are reproducible and links to access
the code used are provided.

6.1 Implementation

In this section, we present the Python implementation that we developed in order to
evaluate Madeus and Concerto. In practice, this is an implementation of Concerto, on
top of which was developed a Madeus abstraction layer. Consequently, in the following
we focus on the Concerto implementation itself. First, we detail the architecture of
the implementation, outlining some design choices. Then, we showcase how it can be
used from the point of view of a developer. Note that the full source code is available
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online1 under the GNU GPLv3 license.

6.1.1 Architecture of the implementation and design choices

6.1.1.1 Programming language

Concerto recon�gurations, from a system administrator's perspective, essentially con-
sists in coordinating the execution of commands on multiple hosts. This means that
Concerto itself is never doing heavy computation, for example. Therefore, there is no
need for a highly optimized language with a compiler. On the other hand, it is very
important for the language used to describe Concerto actions (what is executed by
the transitions of a component) to accessible, if not familiar, to the actors involved
(module developers, recon�guration developers, system administrators). Also, be-
cause Concerto may be used in multiple environments, and in particular on multiple
OSs, the portability of the code is important.

With these considerations in mind, Python was chosen as the language for our
implementation. In addition to ful�lling the requirements listed before, Python is
widely used in the �eld of system con�guration and recon�guration. This ensures
that extensive tooling and libraries are available to be used by module developers.
The �battery included� approach of Python also makes it one of the most accessible
general-purpose programming languages.

6.1.1.2 General architecture

Object-oriented programming was used extensively to expose the major Concerto
concepts to the users (component types, assemblies, recon�guration programs). Fig-
ure 6.1 shows the Python types and classes that are available in our implementation
of Concerto.

The class Component represents a Concerto control component type. A new com-
ponent type is created by declaring a new class that inherits Component. The class
must override the abstract method create, in particular, the following attributes must
be initialized: places, initial_place, groups, transitions and dependencies

(which correspond to ports). Each Transition contains an element action, which is
expected to be a Python function, and will be called when the transition is executed,
possibly with arguments.

An instance of the class Assembly corresponds to an environment in which to
execute recon�guration programs. It keeps track of unique component identi�ers and
connections, and also manages the Python threads dedicated to executing recon�g-
urations. The user (typically, a system administrator) de�nes an Assembly object
and can then call its method run_reconfiguration. This asynchronously starts the
recon�guration in a new Python thread. The method synchronize stops the calling

1https://gitlab.inria.fr/VeRDi-project/concerto

https://gitlab.inria.fr/VeRDi-project/concerto
https://gitlab.inria.fr/VeRDi-project/concerto
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<<tuple>>

Transition
+origin_place: String
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<<tuple>>

Dependency
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<<enumeration>>

DependencyType
 USE
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1
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 WAIT
 WAIT_ALL

1

 -instructions
*

 +type

Assembly
+run_reconfiguration(reconf:Reconfiguration)
+synchronize()
+terminate()

Figure 6.1: UML class diagram of our implementation of Concerto.

thread until the recon�guration has been fully executed, then the method terminate

can be used to destroy the thread.
A Reconfiguration object stores a list of recon�guration instructions (instances

of InternalInstruction). Instructions can be appended to the list with dedicated
methods, one for each instruction type. Note two additional instructions compared to
the formal model: wait_all prevents further instructions to be executed until all ex-
isting component instances have �nished executing their behaviors (this is equivalent
to a sequence of wait instructions), while call provides a way to compose recon�gu-
rations: it takes a Reconfiguration object as argument and adds all its instructions
to the internal list of the current object.

6.1.1.3 Execution

When a recon�guration is executed over an instance of Assembly, a new Python
thread is started to perform the following actions in a loop:

1. try to apply the �rst instruction in the recon�guration program (if successful,
discard the instruction);

2. for each instance with at least one behavior in its queue:

(a) check if any place has been reached,
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(b) check if the �nal places of the current behavior have been reached, update
the behavior accordingly,

(c) check transitions conditions, and if satis�ed, start the corresponding action
in a new thread,

(d) check if any of the previously started actions has terminated.

This loop e�ectively attempts to execute the semantic rules de�ned in the formal
model of Concerto in a particular order. While other orders could be chosen, this one
has the advantage of ensuring that the recon�guration program and each component
instance have a chance to move forward in their execution at regular intervals of
time. Also, because the actions associated to transitions (i.e., Python functions)
are executed in other threads, the semantic rules are applied independently of these
user-de�ned actions. Note that Python threads do not take advantage of hardware
parallelism capabilities, but because the actions usually run other (possibly remote)
processes to do the heavy work, this is not an issue.

6.1.2 Describing component types

In this section, we see how a component developer can de�ne a component type
by looking at the implementation (given in Listing 6.1) of the component type Db

from Figure 5.1 on page 81. Line 1, we see that a Db class is declared and extends
class Component. Lines 2 to 56, the create method is de�ned as required by the
implementation, de�ning the behaviors, the places, the initial place, the switches, the
transitions, the groups and the dependencies (i.e., ports) of the component type. Lines
59 to 63 hint at a possible implementation of a recon�guration action for transition
allocate.

The declaration of the behaviors, places and initial place of the component type
(lines 3 to 21) are straightforward.

Lines 26 to 28, the switch of the internal-net of the component type is declared. It
is called sw_choice and references a function declared just before, switch_choice_f
(lines 23 and 24). This function is a user-de�ned choice function for which branch
of the switch to choose, which corresponds in the formal model to which transition
ending to choose. The implementation allows connected components to communicate
Python values through their ports. This is used line 24 to choose a transition end-
ing depending on which value is provided by another component to the input port
backup_in.

Lines 30 to 44, a list of transitions is given in the form of a dictionary associating a
name to a tuple containing: the name of the source place, the name of the destination
place, the name of the behavior associated to the transition, a station identi�er for
the destination place and the Python function to execute as transition action. Most
of the time, the station identi�er is 0, but when two transitions associated with the
same behavior must be connected to distinct stations, each one must have a distinct



CHAPTER 6. EVALUATION 124

Listing 6.1: Declaration of the Db component type from Figure 5.1 in our implemen-
tation

1 class Db(Component ):

2 def create(self):

3 self.behaviors = [

4 'install ',

5 'backup ',

6 'change -config ',

7 'uninstall '

8 ]

9

10 self.places = [

11 'uninstalled ',

12 'allocated ',

13 'configured ',

14 'sw1',

15 'sw2',

16 'running ',

17 'read -only',

18 'cleaned '

19 ]

20

21 self.initial_place = 'uninstalled '

22

23 def switch_choice_f(component_instance , current_behavior ):

24 return [0] if component_instance.read('backup_in ') is None else [1]

25

26 self.switches = [

27 ('sw_choice ', switch_choice_f)

28 ]

29

30 self.transitions = {

31 'allocate ': ('uninstalled ', 'allocated ' , 'install ' , 0, self.allocate),

32 'conf1' : ('allocated ' , 'configured ' , 'install ' , 0, self.conf1 ),

33 'conf2' : ('allocated ' , 'configured ' , 'install ' , 0, self.conf2 ),

34 'sw' : ('configured ' , 'sw_choice ' , 'install ' , 0, self.sw ),

35 'sw1t' : ('sw_choice ' , 'sw1' , 'install ' , 0, empty ),

36 'sw2t' : ('sw_choice ' , 'sw2' , 'install ' , 0, empty ),

37 'run' : ('sw1' , 'running ' , 'install ' , 0, self.run ),

38 'restore ' : ('sw2' , 'running ' , 'install ' , 1, self.restore ),

39 'bak' : ('running ' , 'read -only' , 'backup ' , 0, self.bak ),

40 'rsa' : ('read -only' , 'cleaned ' , 'change -config ', 0, self.rs ),

41 'res' : ('cleaned ' , 'allocated ' , 'change -config ', 0, self.res ),

42 'rsb' : ('read -only' , 'cleaned ' , 'uninstall ' , 0, self.rs ),

43 'del' : ('cleaned ' , 'uninstalled ', 'uninstall ' , 0, self.delete )

44 }

45

46 self.groups = {

47 'using_backup_in ': ['configured ', 'sw1', 'sw2'],

48 'providing_sql_read ': ['running ', 'read -only']

49 }

50

51 self.dependencies = {

52 'backup_in ' : (DepType.USE , 'using_backup_in ' ),

53 'sql_read ' : (DepType.PROVIDE , 'providing_sql_read '),

54 'sql_write ' : (DepType.PROVIDE , 'running ' ),

55 'backup_out ': (DepType.PROVIDE , 'read -only' )

56 }

57

58 # Definition of the actions

59 def allocate(self):

60 remote = SSHClient ()

61 remote.connect(host , user , pwd)

62 remote.exec_command(cmd)

63 ...
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Listing 6.2: Declaration of the recon�guration program from Listing 5.1 in our im-
plementation

1 rprog = Reconfiguration ()

2 rprog.add("db", Db)

3 rprog.add("proxy", Proxy)

4 rprog.con("proxy", "sql_write", "db", "sql_write")

5 rprog.con("proxy", "sql_read", "db", "sql_read")

6 rprog.con("db", "backup_in", "other_comp", "other_port")

7 rprog.pushB("db", "install")

8 rprog.pushB("proxy", "install")

9 rprog.wait("proxy")

10

11 assembly = Assembly ()

12 assembly.run_reconfiguration(rprog)

13 print("Reconfiguration in progress")

14 assembly.synchronize ()

15 print("Reconfiguration completed")

number. This is the case for the run and restore transitions (lines 37 and 38),
which each are in a di�erent branch of the switch, and therefore must be connected
to distinct stations of place running.

Lines 51 to 56, the dependencies of the component type (its ports in the formal
model) are de�ned as a dictionary associating each name of dependency to a tuple
containing the type of dependency (use or provide) and the name of the group it is
associated to. The groups reference the dictionary of groups (here declared lines 46
to 49 which associates each name of group to its list of places), or names of places
directly (in which case it corresponds to a group containing only this place).

6.1.3 Describing recon�guration programs

In this section, we see how a recon�guration developer can de�ne a recon�guration
program by looking at the implementation (given in Listing 6.2) of the recon�guration
program de�ned in Listing 5.1 on page 88.

On line 1, an instance rprog of class Reconfiguration is created. It is an empty
recon�guration program which can be completed by calling its methods, which each
correspond to one of the Concerto instruction types. Note that calling these methods
only expands the recon�guration program itself and does not execute anything. For
example, on line 2, the instruction to add an instance with identi�er db of component
type Db is added to rprog (assuming that class Db such as de�ned in Listing 6.2 is in
scope). Note that in our implementation, the add method supports passing additional
arguments which will be passed to the constructor of the class corresponding to the
component type when the add instruction is executed, which e�ectively allows for
parametric component types. Lines 3 to 9 are straightforward and add the other
recon�guration instructions to rprog.

On line 11, an instance assembly of class Assembly is created. It acts as a medium
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for recon�guration to be executed. For example, on line 12, the rprog recon�guration
is executed. This execution occurs in another thread, so the print instruction on line
13 is executed immediately (i.e., the call to run_reconfiguration is not blocking).
On line 14, the call to synchronize e�ectively waits actively for the execution of all
the recon�guration instructions queued in the assembly to be �nished. In this case,
the last instruction being a wait to ensure the completion of the recon�guration, the
print instruction on line 15 is executed after the completion of rprog.

6.1.4 Madeus abstraction layer

Concerto comes with many additional concepts compared to Madeus in order to
support recon�guration. In our Python implementation, when only the deployment
part of the life-cycles need to be modeled, this leads to unnecessarily long component
type descriptions and to the declaration of a recon�guration which is essentially always
the same in this case: create component instances, connect them and push their only
behavior to their queue.

Because Concerto is a super-set of Madeus, we were able to provide an abstrac-
tion layer on top of Concerto which allows users to manipulate Madeus concepts
directly. This layer consists in two classes exposed to the user, MadeusComponent
and MadeusAssembly. For practical reasons, even if component types and compo-
nent instances are the same in Madeus, we still consider these to be distinct in the
implementation, similarly to Concerto.

Listing 6.3 demonstrates how the example of Figure 4.1 on page 60 can be imple-
mented with this Madeus abstraction layer.

Lines 1 to 26 are the declaration of the Db component type for the db Madeus
component of Figure 4.1. Notice that unlike in a Concerto component type, there are
no behaviors, no groups and no switches declared. Also, notice that the declaration of
the transitions (lines 11 to 14) only associates a starting place, a destination place and
an action function to each transition name. Finally, the declaration of dependencies
(i.e., ports) does not associate names to groups but names to places, as is expected
in Madeus.

Lines 31 to 43 are the declaration of a type of assembly MyAssembly. It must
implement the create function. This function de�nes its set of components (lines
33 to 36) with a dictionary associating component identi�ers with one component
instance each. It also de�nes its set of dependencies (i.e., connections between ports)
between component instances (lines 38 to 43).

Finally, on line 45, an instance of this assembly is created, and run on line 46
(e�ectively starting the deployment process). The run function is non-blocking, so
the print instruction on line 47 is executed immediately. Similarly to Concerto, the
execution of the assembly can be synchronized (line 48), e�ectively blocking until the
deployment has completed. The print instruction on line 49 therefore executed after
the completion of the deployment.
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Listing 6.3: Declaration of the components and assembly of Figure 4.1 in our imple-
mentation

1 class Db(MadeusComponent ):

2 def create(self):

3 self.places = [

4 'undeployed ',

5 'allocated ',

6 'running '

7 ]

8

9 self.initial_place = 'undeployed '

10

11 self.transitions = {

12 'allocate ': ('undeployed ', 'allocated ', self.allocate),

13 'run' : ('allocated ' , 'running ' , self.run )

14 }

15

16 self.dependencies = {

17 'ip' : (DepType.PROVIDE , ['using_backup_in ']),

18 'service ': (DepType.PROVIDE , ['service '] )

19 }

20

21 # Definition of the actions

22 def allocate(self):

23 remote = SSHClient ()

24 remote.connect(host , user , pwd)

25 remote.exec_command(cmd)

26 ...

27

28 class Server(MadeusComponent ):

29 ...

30

31 class MyAssembly(MadeusAssembly ):

32 def create(self):

33 self.components = {

34 'db' : Db(),

35 'server ': Server ()

36 }

37

38 self.dependencies = [

39 ('server ', 'database ',

40 'db' , 'service '),

41 ('server ', 'database_ip ',

42 'db' , 'ip')

43 ]

44

45 assembly = MyAssembly ()

46 assembly.run()

47 print("Deployment in progress")

48 assembly.synchronize ()

49 print("Deployment completed")
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6.2 Use-cases

To evaluate Concerto, we use two main scenarios, each composed of multiple recon-
�gurations. One of these scenarios is a real production use-case, while the other is
a synthetic use-case. In this section, we introduce both of these use-cases and how
they were implemented in a reproducible fashion.

6.2.1 Production use-case

Our production use use-case is used to ensure that Madeus and Concerto are func-
tional, evaluate to which extent the performance model allows to predict the execution
time of a recon�guration program and separation of concerns.

This use-case is a restriction of a scenario which was presented in the context of
a multi-region deployment of OpenStack at the 2018 Vancouver OpenStack summit2.
OpenStack is a software solution to operate private clouds. It acts as an operating sys-
tem for a cloud service and manages its infrastructure. In a multi-region deployment
of OpenStack, the infrastructure is split into regions, and some OpenStack control
modules are replicated to make each region partially autonomous.

We focus on the database module used within OpenStack. In our scenario, we con-
sider one initial con�guration that corresponds to the initial deployment (DeployInit)
and two recon�gurations: Decentralization and Scaling. During the initial deploy-
ment (DeployInit), dependencies are installed on all the hosts and a single database
instance is deployed on one host called initial host. During the Decentralization, the
database is recon�gured so that multiple hosts (each representing a di�erent region)
have a local instance of the database. The hosts other than the initial host are called
additional hosts. These instances are con�gured as a Galera cluster in order to syn-
chronize their content. During the Scaling, additional database instances are deployed
on other additional hosts, e�ectively increasing the size of the cluster.

6.2.1.1 Modules

The main module is the database module MariaDB. We use a containerized version
of the MariaDB software which can be booted in three modes. The standalone mode
corresponds to a standard instance of MariaDB. The cluster-init mode makes it pos-
sible to initiate a new Galera cluster so that other instances of MariaDB can join it.
Finally, the cluster-join mode allows the instance to join an already existing Galera
cluster.

Figure 6.2 shows a possible implementation of this module by two Concerto control
component types, one to work in standalone mode or cluster-init mode (MariaDB-
Master) and one to work in cluster-join mode (MariaDBWorker).

2https://www.openstack.org/videos/summits/vancouver-2018/

highly-resilient-multi-region-keystone-deployments

https://www.openstack.org/videos/summits/vancouver-2018/highly-resilient-multi-region-keystone-deployments
https://www.openstack.org/videos/summits/vancouver-2018/highly-resilient-multi-region-keystone-deployments
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Figure 6.2: Two possible Concerto component type for MariaDB, one for the initial
host (Master) and one for the additional hosts (Worker). The only di�erence is the
presence of a master use port in the Worker implementation, allowing for proper
coordination when joining a Galera cluster. In both component types, the group
containing place dir_created also contain all the places represented above them
(cfged_pld, started, ready, running, backuped, and stopped).

Its life-cycle is as follows. To deploy MariaDB, a dedicated directory must be
mounted (transition m and place mounted of the green behavior install), in which
a hierarchy of directories must be created (transition c and place dir_created).
The con�guration �les, which state among other things in which mode MariaDB
will be run, must be placed at the appropriate location (transition sc). In parallel
to this, the MariaDB docker image may be downloaded once Docker is available
on the host (transition p and place r_t_pull). Then, the Docker image may be
started (transition st and place started). Once the database service is operational,
a previously created backup present on the host may be restored, hence populating
the database (transition rr of the yellow behavior restore_run). After possibly
restoring this backup, the database can be used by other modules (mariadb provide
port). When running, the MariaDB service may be stopped, after possibly saving a
backup of the content of the database on the host (transition b of the purple behavior
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Figure 6.3: Overview of the Concerto assembly of a Galera distributed database with
one initial and one additional host. The content of the blue rectangle represented for
the initial host is hidden in the additional host for the sake of readability.

backup). The directories containing the con�guration of MariaDB and its data can
then be unmounted (transition u of the red behavior uninstall), e�ectively resetting
the database. Note that many other operations could be performed on this module,
but these are the ones which we use in this chapter. A database developer may build
a much more complex and complete control component for MariaDB.

Figure 6.3 shows an overview of a Concerto assembly corresponding to the de-
ployed state of two instances of a MariaDB database in a Galera cluster, one the
initial host and one on an additional host.

Other modules are used to support directly or indirectly the database. Docker
must be installed on each host running the database (component Docker of Fig-
ure 6.3), as well as appropriate Python libraries (component PipLibs). In turn, these
require software packages to be installed through the package manager of the host
OS (component Apt). The life-cycle of these modules is entirely sequential. Finally,
the Sysbench benchmarking software (Sysbench component) is used to act as a client
of the distributed database in our scenario. It can be installed and run, and then
suspended and restarted when necessary.

6.2.1.2 Recon�gurations

We consider the initial deployment DeployInit and the two recon�gurations De-
centralization and Scaling to have two integer parameters n and m (n ≥ 2, m > n),
n and m being numbers of hosts on which instances of MariaDB are going to be
deployed in the recon�gurations presented below.

The initial con�guration, namely DeployInit, deploys the initial host with the
database in standalone mode, by instantiating the component types MariaDBMaster,
and StandaloneConfig (used to put MariaDB in the standalone mode). It also
deploys Docker and the Python libraries on m additional hosts, emulating the fact
that these hosts are already under usage in regions but do not have replicas of the
database. Listing 6.4 gives a possible implementation in Concerto to reach this �rst
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Listing 6.4: Deployment program

1 add (m_mariadb , MariaDBMaster)

2 add (m_apt , Apt)

3 add (m_docker , Docker)

4 add (m_piplibs , PipLibs)

5 add (m_sysbench , Sysbench)

6 add (m_sconf , StandaloneConfig)

7 con (m_docker , apt_docker ,

8 m_apt , apt_docker)

9 con (m_piplibs , apt_python ,

10 m_apt , apt_python)

11 con (m_mariadb , config ,

12 m_sconf , data)

13 con (m_mariadb , docker ,

14 m_docker , docker)

15 con (m_mariadb , pip_libs ,

16 m_piplibs , pip_libs)

17 pushB (m_mariadb , install)

18 pushB (m_mariadb , run)

19 pushB (m_apt , install)

20 pushB (m_docker , install)

21 pushB (m_piplibs , install)

22 pushB (m_sysbench , install)

23 pushB (m_sconf , install)

24 for i in [1..m]:

25 add (w{i}_apt , Apt)

26 add (w{i}_docker , Docker)

27 add (w{i}_piplibs , PipLibs)

28 con (w{i}_docker , apt_docker ,

29 w{i}_apt , apt_docker)

30 con (w{i}_piplibs , apt_python ,

31 w{i}_apt , apt_python)

32 pushB (w{i}_apt , install)

33 pushB (w{i}_docker , install)

34 pushB (w{i}_piplibs , install)

Listing 6.5: Decentralization program

1 pushB (m_sysbench , suspend)

2 pushB (m_mariadb , backup)

3 pushB (m_mariadb , uninstall)

4 con (m_docker , apt_docker ,

5 m_apt , apt_docker)

6 add (w_gconf , ClusterJoinConfig)

7 for i in [1,n]:

8 add (w{i}_mariadb , MariaDBWorker)

9 con (w{i}_mariadb , config ,

10 w_gconf , data)

11 con (w{i}_mariadb , docker ,

12 w{i}_docker , docker)

13 con (w{i}_mariadb , pip_libs ,

14 w{i}_piplibs , pip_libs)

15 pushB (w{i}_mariadb , install)

16 wait(m_mariadb)

17 dcon (m_mariadb , config ,

18 m_sconf , data)

19 del (m_sconf)

20 add (m_gconf , ClusterInitConfig)

21 con (m_mariadb , config ,

22 m_gconf , data)

23 pushB (m_mariadb , install)

24 pushB (m_mariadb , restore_run)

25 pushB (m_sysbench , install)

26 for i in [1,n]:

27 con (w{i}_mariadb , master ,

28 m_mariadb , mariadb)

Listing 6.6: Scaling program

1 for i in [n+1,m]:

2 add (w{i}_mariadb , MariaDBWorker)

3 con (w{i}_mariadb , config ,

4 w_gconf , data)

5 con (w{i}_mariadb , docker ,

6 w{i}_docker , docker)

7 con (w{i}_mariadb , pip_libs ,

8 w{i}_piplibs , pip_libs)

9 con (w{i}_mariadb , master ,

10 m_mariadb , mariadb)

11 pushB (w{i}_mariadb , install)

con�guration. This Concerto program will not be evaluated as being considered as
an initial con�guration in our scenario.

The �rst recon�guration, namely Decentralization, start from the initial con�gura-
tion obtained after Listing 6.4. It replaces the standalone database by a distributed,
or decentralized, database with n + 1 instances (one on the initial host and one on
each of the n additional hosts). The recon�guration e�ectively performs a backup
of the content of the database on the initial host, restarts the database container in
cluster-init mode and restores the backup once the database is running. In addition,
it deploys one instance of the database on each of the n additional hosts in cluster-
join mode. Listing 6.5 gives a Concerto program for this recon�guration. Component
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types ClusterInitConfig and ClusterJoinConfig are used to provide con�guration
information to put MariaDB respectively in cluster-init mode and cluster-join mode.

The second recon�guration, namely Scaling, scales up the distributed database
by increasing the number of additional hosts (from n to m). Listing 6.6 gives one
possible Concerto program for this recon�guration.

6.2.1.3 Implementation details

This scenario was coded in a reproducible fashion using Concerto and Ansible. The
code is accessible on a public repository3.

In Concerto, the recon�guration programs presented in Listings 6.4 to 6.6 are
used. The MariaDBMaster and MariaDBWorker component types correspond to what
is shown in Figure 6.2.

In Ansible, each recon�guration is coded as a playbook to execute. Some recon-
�guration actions can be gathered under the same Ansible task, in particular all the
deployment actions of the modules other than the database that are deployed on mul-
tiple hosts. When it comes to the database, when there are multiple database modules
(migration and scaling recon�gurations), the deployment actions of the databases
of the additional DB nodes can respectively be gathered under the same Ansible
task. However, the non-deployment actions (backup, stopping the container, restor-
ing backup) and the action to start the Docker container of the database of the initial
DB node have to execute in a separate task.

6.2.2 Synthetic use-cases

The goal of our synthetic use-cases is to test the di�erent possible situations in terms
of parallelism that can be encountered during recon�guration. This diversity allows us
to ensure that the implementation behaves in conformity with what the performance
model predicts and to analyze how performance is a�ected by scale or di�erent types
of parallelism.

Despite their synthetic nature, these use-cases are inspired by common problems:
modules having dependencies to several other modules. While no system is actually
recon�gured, the component types and recon�gurations have been implemented and
the only di�erence between this and a real use-case is that the transition actions
wait for a given amount of time to simulate something happening instead of actually
executing commands on remote hosts. In the following, we therefore explain the
use-cases using the same vocabulary as we would if the scenario were real.

3https://gitlab.inria.fr/VeRDi-project/galera-experiment

https://gitlab.inria.fr/VeRDi-project/galera-experiment
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6.2.2.1 Modules

We consider a server module, the goal of which is to provide a service, e.g., a web
service, to users external to the assembly. This server relies on number n of other
modules called dependencies, which may be databases, other web services, libraries,
etc. Each module runs on a distinct host machine.

Figure 6.4 shows a Concerto assembly implementing this scenario in the deployed
state. A server with n dependencies is modeled by the component type Servern.
The dependencies are modeled by the component types Dependencyi, where i is an
identi�er for the type of dependency component. The assembly of Figure 6.4 is com-
posed of three instances of three di�erent component types: Server2, Dependency1

and Dependency2.
For the sake of simplicity, we assume that all the dependencies have similar life-

cycles. Their deployment is done in two steps. First install the dependency, second
start the service. After installation (green behavior), we consider that any con�gura-
tion information required by the server to use this dependency is available (through
config and service ports). After starting the service, it can be used by the server
through its service port. When it is running, each dependency may be updated,
and the service can not be provided during this process. It is done in two phases:
�rst perform the update itself, and then restart the service. The update process is
distinct among the dependencies.

The server's life-cycle is as follows. Its deployment (green behavior of Figure 6.4)
starts by allocating some resources to be used (transition sa of the green behavior
deploy). Then, multiple con�guration actions are performed in parallel, one for each
dependency (transitions sc1 and sc2). Each of these actions can only be performed
once the con�guration information of the corresponding dependency is available. Fi-
nally, once each con�guration action has been performed, the server may start its
own service. When it comes to recon�guration, the server may be suspended (red
behavior of Figure 6.4), which causes it to stop using the services provided by the
dependencies. The actions performed to stop using these services are done in parallel.

6.2.2.2 Recon�gurations

We consider four recon�guration use cases, each featuring di�erent kinds of par-
allelism. Concerto implementations of these recon�gurations are given in Listings 6.7
to 6.10. Note that in each of them, a loop is used to express parametric recon�gu-
ration programs, but this can be unrolled as the loop parameter is known prior to
execution. The �rst recon�guration, namely DeployDeps, deploys n dependencies and
features inter-module parallelism when all recon�guration actions are identical on all
components. The second, namely UpdateNoServer, updates these n dependencies and
features inter-module parallelism when all recon�guration actions are not all identi-
cal on all components. The third, namely DeployServer, deploys the server (with
its dependencies already deployed) and features intra-module parallelism. Finally,
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Figure 6.4: A Concerto assembly with two components Dependencyi and one
component Server2. In the server component, the two groups containing either
place sconf1 or place sconf2 also contain all the places represented above them
(configured, running, s1 and s2). In the dependency components, the transitions
dii and dir (marked with *) are considered to be associated respectively to the same
actions.

the fourth, namely UpdateWithServer, updates the n dependencies, which requires
the suspension of the server. It features both inter-module and intra-module paral-
lelisms.
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Listing 6.7: (1) DeployDeps

1 for i in [1,n]:

2 add(dep_i : Dependency_i)

3 pushB(dep_i , install)

Listing 6.8: (2) UpdateNoServer

1 for i in [1,n]:

2 pushB(dep_i , update)

3 pushB(dep_i , install)

Listing 6.9: (3) DeployServer

1 add(server : Server_n)

2 for i in [1,n]:

3 con(dep_i , config ,

4 server , config_i)

5 con(dep_i , service ,

6 server , service_i)

7 pushB(server , deploy)

Listing 6.10: (4) UpdateWithServer

1 for i in [1,n]:

2 pushB(dep_i , update)

3 pushB(dep_i , install)

4 pushB(server , suspend)

5 pushB(server , deploy)

6.2.2.3 Implementation details

This scenario was coded in a reproducible fashion using Concerto and Ansible. The
code is accessible on a public repository4.

Because it is a synthetic use-case, the recon�guration actions only consist in wait-
ing for a given time, which is a parameter of the experiment (for each action). The
component types of Figure 6.4 are implemented as is, with all transition actions ex-
ecuting Python's time.sleep function locally (on the machine executing Concerto) to
wait for the time given as parameter. The recon�guration programs presented in
Listings 6.7 to 6.10 are used.

In Ansible, each recon�guration is coded as a playbook to execute, i.e., a sequence
of tasks. Each task is composed of a recon�guration action and metadata, in partic-
ular on which set of hosts this action must be executed. These tasks are executed
sequentially, but when a task's action is executed on multiple hosts, it is done in
parallel, as explained by the case Inter-host action-based of Figure 3.2 of Chapter 3.
The install and start service actions of the dependencies are respectively considered
to be executable by the same command, allowing us to write it as a single task to be
executed on each of the dependencies' hosts. The update action is however di�erent
on each dependency and they have to be encoded by distinct tasks. Each recon�gura-
tion action is actually a bash sleep command to be executed on the remote host. The
time to wait is determined by text �les sent to the remote host prior to execution,
which are generated from the parameters of the experiment.

One could notice that the Concerto implementation uses a local function to wait
for a given amount of time in the actions, while the Ansible one uses a remote one
(over SSH). This di�erence is due to design di�erences between the two systems and is
not problematic here as they will not be compared directly for performance. Instead,

4https://gitlab.inria.fr/VeRDi-project/concerto-evaluation/-/tree/master/

synthetic

https://gitlab.inria.fr/VeRDi-project/concerto-evaluation/-/tree/master/synthetic
https://gitlab.inria.fr/VeRDi-project/concerto-evaluation/-/tree/master/synthetic
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they will be used separately to check performance models for each solution.

6.3 Performance models

In this section, we present performance models for our main comparison points, An-
sible and Aeolus. These, in addition to the performance model of Concerto (and
Madeus), are meant to allow us to analyze how much parallelism is achieved by each
solution on a given recon�guration scenario, to predict the execution time of each of
them as a function of the durations of the recon�guration actions, and to compare
these results.

First, we present the performance model for Ansible and validate it. Second, we
explain how a performance model for Aeolus can be obtained by a simple transfor-
mation from the one of Concerto. Then, we explain why the analysis made using
Concerto's performance model also apply to Madeus deployments. Finally, we vali-
date the performance model of Concerto using the synthetic use-cases introduced in
the previous section.

6.3.1 A performance model for Ansible

In Ansible, a recon�guration consists in a sequence of tasks, each task being com-
posed of a recon�guration action and metadata, indicating in particular the hosts on
which the action should be executed. Tasks are executed sequentially, but one task
may execute the same action in parallel on multiple hosts. The task is complete only
when the actions have terminated on all hosts, thus introducing a synchronization
barrier before the next task can be executed. Therefore, given a sequence of recon�g-
uration tasks t1, t2, . . . , tn, where ti executes action ai on a set of hosts Hi, the total
recon�guration time is

n∑
i=1

max
h∈Hi

(d (h, ai))

where d (h, ai) is the duration of action ai on host h.
To validate this model, we executed an Ansible recon�guration composed of two

tasks, each executing the Bash command sleep for a randomly determined time
between 0 and 10 seconds (with a potentially di�erent time across hosts). The facts
gathering feature of Ansible was disabled to minimize overhead during the execution.

We performed this experiment 1500 times both for n = 2 and n = 5. For n = 2,
the di�erence between predicted and measured execution time ranged from 0.8s to
5.1s with a mean of 1.0s and a median of 1.0s also. Note that only two measurements
had a di�erence of more than 1.3s. For n = 5 it ranged from 0.9s to 7.2s with a mean
of 1.2s and a median of 1.2s also. Note that only two measurements had a di�erence
of more than 1.6s. One can note from these experiments that a small overhead is
observed when executing Ansible.
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This shows that our execution and performance modeling for Ansible matches
what happens in reality, and is even a bit optimistic, not taking into account the
slight overhead. The code to reproduce these experiments is available online5.

6.3.2 A performance model for Aeolus

Aeolus is no longer under active development, and we could not run it in our exper-
iments. However, its execution model is similar to Concerto, except that transitions
cannot be executed in parallel inside a component. For this reason, we emulate the
execution of Aeolus by replacing the Concerto component types by versions that do
not have parallel transitions (i.e., we sequentially order the recon�guration actions).
Thus, we use the performance model of Concerto to estimate the performance of
Aeolus.

6.3.3 Validation of Concerto's performance model

For Madeus and Concerto, we use their respective performance models presented
in the previous chapters. Note that when it comes to deployment, Madeus and
Concerto have the same level of parallelism expressivity: parallel transitions in the
internal-nets of the components and port-based parallelism between components. For
example, Figure 6.5 shows the Madeus assembly equivalent to deploying the Concerto
assembly shown in Figure 6.4. Therefore, in the following, we only evaluate Concerto
while everything which does not have to do with the dynamicity of the assembly also
applies to Madeus.

In order to ensure that Concerto's performance model matches the experimental
results, the execution time of our four synthetic recon�gurations presented in Sec-
tion 6.2.2 were measured using our Python implementation of Concerto. Recall that
the Concerto recon�guration programs that we analyze are given in Listings 6.7 to
6.10.

Each transition calls the Python function time.sleep to simulate the time re-
quired by an arbitrary recon�guration action. Given a recon�guration, we randomly
selected a duration for each transition (continuous uniform distribution between 0
and 10 seconds), and compared the execution time of the implementation to the pre-
dicted time given by the performance model. The durations in this experiment do
not need to be realistic, as the aim is to test the accuracy of the performance model
in a variety of situations.

We ran this experiment 250 times for each recon�guration, for 1, 5 and 10 depen-
dencies, for a total of 3000 executions. Table 6.1 summarizes the results obtained.
The full results as well as the code to reproduce these experiments are available online
6.

5https://gitlab.inria.fr/VeRDi-project/concerto-evaluation (directory ansibleperf )
6https://gitlab.inria.fr/VeRDi-project/concerto-evaluation (directory synthetic)

https://gitlab.inria.fr/VeRDi-project/concerto-evaluation
https://gitlab.inria.fr/VeRDi-project/concerto-evaluation
https://gitlab.inria.fr/VeRDi-project/concerto-evaluation
https://gitlab.inria.fr/VeRDi-project/concerto-evaluation
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Number of
dependencies

Median Average
Max relative
di�erence (%)

Max absolute
di�erence (s)

DeployDeps

1 10.09s 10.15s
5.7%

(of 0.37s)
0.04s
(0.2%)

5 15.01s 14.84s
0.4%

(of 7.76s)
0.04s
(0.2%)

10 16.16s 16.01s
0.3%

(of 10.94s)
0.05s
(0.3%)

UpdateNoServer

1 10.41s 10.35s
2.5%

(of 0.67s)
0.04s
(0.2%)

5 15.01s 14.84s
0.3%

(of 7.27s)
0.04s
(0.2%)

10 16.52s 16.36s
0.3%

(of 10.46s)
0.04s
(0.2%)

DeployServer

1 14.59s 14.58s
2.5%

(of 0.90s)
0.05s
(0.2%)

5 18.34s 17.95s
0.4%

(of 8.49s)
0.05s
(0.2%)

10 19.19s 19.13s
0.3%

(of 9.64s)
0.05s
(0.2%)

UpdateWithServer

1 17.64s 17.49s
0.5%

(of 5.57s)
0.05s
(0.2%)

5 21.96s 22.04s
0.3%

(of 11.57s)
0.05s
(0.2%)

10 24.21s 23.89s
0.2%

(of 16.80s)
0.05s
(0.2%)

Table 6.1: Summary of the results obtained with the implementation of Concerto on
the synthetic use cases, with either 1, 5 or 10 dependencies. Each row of the table
corresponds to 250 runs. For each one, the median and average over all the runs are
given. Then, the maximum relative time di�erence between the time predicted by the
performance model and the actual measured time in both percentage and seconds is
given. Similarly, the maximum absolute time di�erence is given.
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Figure 6.5: Madeus assembly corresponding to deploying the Concerto assembly
shown in Figure 6.4.

The di�erence between the estimated time and the measured time is at most 0.05
seconds, or 5.7% above the estimated time (in this instance the total execution time
was 0.37 seconds, which explains the relatively high percentage). The median execu-
tion times were, depending on the use cases, included between 10.9 seconds and 24.21
seconds, while the average execution times were included between 10.15 seconds and
23.89 seconds, which is large compared to the maximum di�erence between the esti-
mated time and the measured time. Note that the measured time was always slightly
larger than the estimated time. This is explained by the small overhead introduced
by the Concerto implementation. The performance model therefore matches what is
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observed in reality.

6.4 Parallelism

In this section, we evaluate the parallelism introduced by Madeus and Concerto,
which corresponds to their capacity to execute deployment and recon�guration actions
in parallel while respecting the dependencies between these actions. The expected
consequence of increasing such parallelism is the reduction of the total execution time
of a given deployment or recon�guration.

We �rst use the production use-case presented in Section 6.2.1 to show that the
predictions in terms of parallelism expressivity provided by the performance models
match what happens in reality when using our implementation of Concerto.

Then, we use the performance models presented in Section 6.3 to analyze how
much parallelism Concerto, Aeolus and Ansible express in the synthetic use-case
presented in Section 6.2.2 and compare the resulting total execution times.

6.4.1 Accuracy of the performance model and execution times

on a production use case

In this section, we make use of the production use case presented in Section 6.2 to
evaluate: �rst, to which extent the performance models allow one to predict the
total recon�guration time for Madeus and Concerto; second, the gains of Concerto
compared to Ansible and Aeolus.

We consider the two recon�gurations previously presented in Listings 6.5 and 6.6.
First, the decentralization from a MariaDB instance to a Galera cluster of size 3, 5,
10 and 20. Second, the scaling of a cluster of size 3, with the number of nodes added
equal to 1, 5, 10 and 20. This can for example be part of a multi-region deployment
of OpenStack, as discussed at the 2018 Vancouver OpenStack summit7: originally all
regions use the same centralized database; then OpenStack is recon�gured so that
multiple regions have a local instance of the database synced in a Galera cluster;
and nodes are added when increasing the number of regions having their own local
instances.

Evaluations have been carried out on the Uvb cluster of the experimental platform
Grid'5000 (www.grid5000.fr). Uvb is composed of 43 nodes equipped with two 6-
core Intel Xeon X5670 CPUs, 96 GB RAM, 250 GB HDD and a 1 Gbps Ethernet
network card and a 40 Gbps In�niBand network card (the Ethernet network was used
in our experiments).

The use case has been implemented in Concerto and Ansible. Moreover, Aeolus is
emulated by transforming the Concerto components so that there is no intra-module

7https://www.openstack.org/videos/summits/vancouver-2018/

highly-resilient-multi-region-keystone-deployments

www.grid5000.fr
https://www.openstack.org/videos/summits/vancouver-2018/highly-resilient-multi-region-keystone-deployments
https://www.openstack.org/videos/summits/vancouver-2018/highly-resilient-multi-region-keystone-deployments
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Figure 6.6: Measured running times for Ansible, Aeolus and Concerto and estimated
times of Aeolus and Concerto for execution of the decentralization and scaling recon-
�gurations (error bars: standard deviation).

parallelism. The Concerto and Aeolus implementations use SSH calls to execute Bash
scripts on the remote nodes, while the Ansible one uses the corresponding commands
provided by Ansible (which also uses SSH as a back-end).

For each solution and each parameter, the experiment was repeated 15 times.
The total execution time as well as the durations of the individual transitions for
Concerto and Aeolus were recorded (Ansible does not allow to measure this for each
individual host). The transition durations measured for Aeolus were used as input
of the performance models to estimate the running time of the recon�gurations for
Aeolus and Concerto. Figure 6.6 shows these estimations as well as the measured
running times.

We observe that the performance model gives a slightly lower execution time for
Concerto compared to Aeolus, which is con�rmed by the actual execution times.
These are comprised in the ranges of possible execution times for both Concerto and
Aeolus. In terms of pure performance, Concerto's gains compared to Aeolus range
from -0.6% (scaling, 10 nodes) to 8.5% (decentralization, 5 nodes), and from 5.4%
(scaling, 1 node) to 32.1% (decentralization, 3 nodes) compared to Ansible. In terms
of precision of the time estimation using the average duration for each transition, the
maximum error is 10.8% (3.8s) for the scaling with 10 additional nodes with Concerto.
This error is explained by the fact that taking the average durations of the transi-
tions leads to underestimating the in�uence that a single transition can have on the
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total execution time. When using respectively the minimum and maximum durations
instead, the measured execution time is always between the min/max estimations.

Overall, the performance gain is, as expected very high compared to Ansible
which is one of the most used production tool to handle recon�gurations. However,
the performance gain appears to be low compared to Aeolus in this real use-case.
This result was however predicted by the performance model and is due to a lack of
exploitable intra-module parallelism. We believe that inserting this use-case within
the complete OpenStack multi-region recon�guration case would o�er a much more
convincing gain as introducing more components to recon�gure. We did not get
enough time to perform this integration, but we have conducted experiments on
the deployment of OpenStack with Madeus (under minor revision to the Journal
of Systems and Software (JSS)8) that have shown a performance gain up to 30%
compared to Aeolus. That work used the implementation of Madeus presented in
Section 6.1.4, however we do not detail this experiment in this document as the author
did not take part in this work other than providing the Madeus implementation.

6.4.2 Analysis of parallelism expressivity

In order to evaluate the potential gain of Concerto, we use its performance model,
along with those of Aeolus and Ansible to compare their parallelism in the synthetic
use cases presented in Section 6.2. We do this by using the performance models
presented before to express the total execution time of each of the four recon�gurations
as a function of the duration of their individual recon�guration actions. The resulting
formulas are listed in Table 6.2 and allow us to understand the consequences of each
model's parallelism expressivity. We do this by discussing each recon�guration one
by one, discussing what happens in Ansible, Aeolus and Concerto depending on the
number of dependencies (scalability) and on the relative duration of the di�erent
recon�guration actions.

(1) DeployDeps: We consider the deployment of n instances of n component types
Dependency1, . . . , Dependencyn. The recon�guration is given in Listing 6.7 and the
formulas given by the performance models of Concerto, Aeolus and Ansible are given
in Table 6.2 In this use-case the behavior install is the only one considered. As
all Dependencyi component types are supposed to perform the same actions within
this behavior (denoted with a star on Figure 6.4), Ansible is able to perform the
same action simultaneously on all instances. As a result, the transitions dii can be
executed in parallel across the instances depi, then the transitions dri. The formulas
are identical for Aeolus and Concerto, because there are no parallel transitions in
the components, i.e., there is only inter-module parallelism. The gain for Concerto
and Aeolus compared to Ansible depends on the di�erence of duration of similar
transitions across instances. One the one hand, Figure 6.7 illustrates what happens

8https://hal.inria.fr/hal-02737859

https://hal.inria.fr/hal-02737859


CHAPTER 6. EVALUATION 143

Framework Formula

(1) DeployDeps
Ansible maxi {ddii}+ maxi {ddri}
Aeolus maxi{ddii + ddri}
Concerto maxi{ddii + ddri}

(2) UpdateNoServer
Ansible

∑
i {ddui}+ maxi {ddri}

Aeolus maxi{ddui + ddri}
Concerto maxi{ddui + ddri}

(3) DeployServer
Ansible dsa +

∑
i {dsci}+ dsr

Aeolus dsa +
∑

i {dsci}+ dsr
Concerto dsa + maxi {dsci}+ dsr

(4) UpdateWithServer

Ansible
∑

i {ddui + dssi + dspi}+ maxi {ddri}+ dsr

Aeolus
max

(
maxi

{
ddui +

∑
j≤i
{
dssj
}

+ ddri

}
,

dsr +
∑

i{dssi + dspi})

Concerto
max(maxi{ddui + dssi + ddri},
dsr + maxi{dssi + dspi})

Table 6.2: Theoretical total execution time for each recon�guration of the synthetic
use-case in Concerto, Aeolus and Ansible as a function of the duration of each recon-
�guration action.

when this di�erence is large, which may happen because of hosts having di�erent
hardware, di�erences in network bandwidth, etc. For instance, with ddi1 = 5, ddi2 =
50, ddr1 = 50, ddr2 = 5, the execution time for Ansible is 50 + 50 = 100, whereas it is
max(55, 55) = 55 for Aeolus and Concerto.

On the other hand, when running the same actions on similar hardware, we expect
a normal distributionN (µ, σ2) (of mean µ and standard deviation σ) for the durations
of the transitions dii and dri respectively. As a result, Table 6.3 shows the distribution
of the total execution time for di�erent values of the number of dependencies n and
σ. Without loss of generality, the mean duration for each transition is set to µ = 60.
With a standard deviation σ = 10 and n = 2 dependencies, there is a small di�erence
in mean execution time of 3.3 seconds between Ansible and Concerto/Aeolus. For
n = 2000 however, Concerto/Aeolus is 20.1 seconds faster. This shows that inter-
module parallelism helps the scalability of Concerto and Aeolus on bigger assemblies.
If we choose σ = 20, the di�erence in mean execution time is 6.7 seconds for n = 2
and 40.2 seconds for n = 2000, twice as much as a similar case with σ = 10. With
σ = 100, the di�erence in mean execution time is 32.3 for n = 2 and 201.2 seconds for
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Figure 6.7: Gantt chart representing the di�erence in parallelism between Ansible on
the one hand and Concerto and Aeolus in the other hand.

n = 2000, a tenfold increase compared to the case with σ = 10. Thus, the absolute
gain in time of Concerto and Aeolus compared to Ansible seems to be proportional
to the considered standard deviation of transitions durations σ.
(2) UpdateNoServer: Given n dependencies in place running, we consider the
update of these dependencies. The recon�guration is given in Listing 6.8 and the
formulas are given in Table 6.2 (2). Recall here that unlike the previous case, the
transitions dui of the behavior update are not assumed to be the same among the de-
pendencies (di�erent types of components), therefore Ansible cannot execute them in
parallel (transitions di, as before, can be executed in parallel). In this case, assuming
that maxi{ddri} is small compared to

∑
i{ddii}, the expected gain of Concerto and

Aeolus compared to Ansible is proportional to the number of dependencies, showing
the better scalability resulting from inter-module parallelism.
(3) DeployServer: Given n dependencies in place running, we consider the deploy-
ment of an instance of Server that uses these dependencies. The recon�guration is
given in Listing 6.9 and the formulas are given in Table 6.2 (3). Here, the formulas are
similar for Ansible and Aeolus, as the transitions sci cannot be performed in parallel
by Ansible (because they are di�erent), nor by Aeolus (because they are part of the
same component). In this case, assuming that dsa+dsr is small compared to

∑
i{dsci},

the expected gain of Concerto compared to Aeolus and Ansible is proportional to the
number of parallel transitions.
(4) UpdateWithServer: Given n dependencies and a server in place running, we
consider the update of all the dependencies, which requires a suspension of the server.
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Table 6.3: Distributions of the total execution time when the transitions follow a
normal distribution N (µ, σ2) depending on the number of dependencies n and σ
(with µ = 60). Each histogram was obtained by simulation over 100,000 samples.
Histograms were omitted for σ = 100 for the sake of readability.
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The recon�guration is given in Listing 6.10 and the formulas are given in Table 6.2
(4). In Ansible, the transitions are executed sequentially, except for the transitions dri
that can be executed in parallel (same action for all component types in the behavior
install). In Aeolus, thanks to inter-module parallelism, the recon�guration time is
the longest time required by any component to execute its behaviors. The �rst part
of the outer max corresponds to the execution of the dependencies. The execution
time of instance depi is dui + dri plus the time required before the port service may
be de-activated. There is no intra-module parallelism in Aeolus, so the ssi transitions
execute sequentially. Therefore, the time for use port servicei to be deactivated is∑

j≤i
{
dssj
}
, which hence is the time it takes for the port service to be able to be

deactivated. The second part of the outer max corresponds to the execution of the
server in which all the transitions have been sequentialized, hence giving the sum of
all the transition durations. In Concerto, the transitions ssi and spi can be executed
in parallel. Compared to Aeolus, this signi�cantly decreases the time required before
the dependencies may leave the place running (for the ith dependency module, it
roughly divides it by i), and divides by roughly n the execution time of the ssi and
spi transitions. For instance, if we set the duration of all transitions to 5 seconds, this
recon�guration with 10 dependencies would take 160 seconds for Ansible, 105 seconds
for Aeolus and 15 seconds for Concerto. With 100 dependencies, the time would
increase to 1510 seconds for Ansible and 1005 seconds for Aeolus, while remaining at
15 seconds for Concerto.

Overall, we saw that inter-module parallelism (which Aeolus, Madeus and Con-
certo have) improves performance as the number of components having to perform
actions at the same time increases, which improves the scalability in terms of perfor-
mance (DeployDeps, UpdateNoServer, UpdateWithServer). Even when Ansible can
execute recon�guration actions in parallel on multiple hosts, the di�erence in duration
of recon�guration actions on each host generates a loss of performance (DeployDeps).
We also saw that intra-module parallelism (which only Madeus and Concerto have)
improves performance as the number of actions that can be done in parallel in a
component increases (DeployServer and UpdateWithServer). Finally, we saw that
a combination of inter-module and intra-module parallelism as o�ered by Concerto
(and Madeus) can have a very high impact on the overall recon�guration execution
time. A good example of this is the use-case UpdateWithServer, as the number of
Dependency_i components increases.

6.5 Separation of concerns

In this section, we evaluate the separation of concerns of Madeus and Concerto. As
presented in Chapter 3, we consider three types of actors which are commonly involved
in distributed software during their existence: module developers, recon�guration de-
velopers and system administrators. Recall that module developers are experts in a
piece of software, i.e., in what it does, how it works, its life-cycle and its dependencies
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(e.g., expert in databases); recon�guration developers are experts at assembling com-
ponents into a functional application (e.g., expert in web applications) and know how
to properly recon�gure a given application to ensure continued functionality, integrity
of data, minimal downtime, etc.; and system administrators are in charge of a system,
usually the infrastructure (physical or virtual machines, network, etc.) as well as the
software running on it. They are the ones who trigger manual recon�gurations or set
up autonomic recon�guration rules.

To evaluate separation of concerns, we �rst list for each actor what they need to
be provided in order to properly do their job. For each element, we check whether
this piece of information is provided directly to them (by other actors or by the
recon�guration framework), or if they need to obtain it by looking at information
(code, documentation, etc.) which is not addressed to them, possibly requiring skills
which are not part of their area of expertise.

6.5.1 Module developers

Module developers' main purpose is to create and maintain a piece of software's source
code. Additionally, they need to provide documentation explaining how to use their
piece of software.

Because we focus on modular development of distributed systems, the speci�city
of module developers is that they do not need information from other actors as they
are at the start of the chain. However, they need to specify the requirements of their
modules, what they provide and how to operate them. For example, they at least
need to provide a way to deploy, start and/or run them.

If the recon�guration solution is capable of handling non-trivial life-cycles, module
developers also have to provide ways to control this life-cycle. For instance, in Aeolus,
Madeus and Concerto, they need to express their life-cycle as an object close to state
machine, indicate the set of services used and provided by the piece of software during
its life-cycle, and associate them to the corresponding part of their life-cycle state-
machines.

In solutions that support more than deployment, such as Aeolus and Concerto,
but also TOSCA-based approaches among others, they need to de�ne additional parts
of their life-cycles such as removal, update, suspended states, etc.

In Madeus and Concerto, they also have to precisely de�ne the dependencies be-
tween deployment/recon�guration actions so that intra-module parallelism can occur.
While technically representing extra work, we argue that this is similar to writing pre-
cise documentation or good deployment scripts, which is good practice, and is in the
area of expertise of the module developer.

Finally, Concerto requires the de�nition of behaviors for the component, essen-
tially mapping high-level actions to be performed by the component (e.g., deployment,
update) to a set of recon�guration actions, i.e., transitions of the internal-net. Again,
this is similar to writing documentation and is in the module developer's area of
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expertise.

6.5.2 Recon�guration developers
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Figure 6.8: Concerto assembly with behavioral interfaces corresponding to the Con-
certo assembly shown in Figure 6.4 (on page 134).

The main purpose of recon�guration developers is to list and con�gure individual
pieces of software (already existing or yet to be deployed) so that they can work
together as a functional application. They also de�ne operations that can be applied
to this application (e.g., changes in scale, updates, changes in functionality, etc.).

They need to know the requirements of each of the modules they want to manipu-
late and what these provide. They also need to have information about the life-cycles
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of the modules, their di�erent possible con�gurations and how to make them go from
one con�guration to the other.

In Ansible, unless extensive documentation is provided, the requirements of the
roles (which are the most appropriate unit in Ansible to de�ne a module), what
they provide and how to change their con�guration is not explicitly provided to the
recon�guration developer. The order in which roles have to be executed in a playbook
is therefore not straightforward to determine. To do so, they need to check the code
written by the module developers. For instance, in the production use-case presented
in Section 6.2, if the deployment playbook was modi�ed to deploy the database (which
uses a Docker container) before Docker, the error would only be detected at run-time,
and the error message would not clearly state that a dependency was not respected.
Instead, the application recon�guration would have to explore the database role,
realize that the task responsible for the error tries to boot a Docker container and
deduce that Docker must be deployed before this happens.

Concerto's behavioral interfaces hide the complexity of the life-cycle de�ned by
the module developer, while providing for each possible con�guration of the module
(stable states) information about how to go to the other con�gurations of the module
(behavior executions), as well as information necessary to coordinate its life-cycle
with other life-cycles (partial order in which use and provide ports are activated
and deactivated). For example, Figure 6.8 shows the assembly of Figure 6.4 with
behavioral interfaces, which corresponds to the information that a recon�guration
developer needs.

For deployment, the equivalent of recon�guration developers are deployment pro-
cess developers. In Madeus, while behavioral interfaces could also be applied, we
argue that because there is only one action to be performed on each module (i.e.,
deployment), the deployment process developer already knows the two possible con-
�gurations and how to go from one to the other. When it comes to the orchestration
with other life-cycles, we argue that, because the transitions in Madeus only go in
one direction, the partial order can be easily deduced from the internal-net, which is
much more simple than in Concerto.

6.5.3 System administrators

The main purpose of system administrators is to host distributed software and use
deployment and recon�guration programs or mechanisms developed by deploymen-
t/recon�guration developers to deploy them, manage them and apply changes to
them.

System administrators should not have to deeply understand these programs or
mechanisms or understand how they work, but rather should only have to focus on
the result they want to achieve on their system.

Some recon�guration solutions de�ne their recon�gurations by the expected state
of the system (in this case the recon�guration operations are deduced by comput-
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ing the di�erence with its current state). In this case the separation of concerns is
guaranteed by design.

In other cases, including Madeus and Concerto, a recon�guration is de�ned by a set
of operations to perform. When no abstraction is provided over the current structure
of the application, such as in Ansible, it is impossible to automatically get a repre-
sentation of the resulting system if a recon�guration were to be performed. However,
graph-based and component-based solutions (e.g., TOSCA-based approaches, Aeolus,
Madeus, Concerto) represent the state of the system using a graph or an assembly,
and their recon�guration language acts on this graph or assembly. It is therefore
possible to know what the graph or assembly will be like after executing a dry-run of
a recon�guration.

6.6 Conclusion

In this chapter we have evaluated Madeus and Concerto in terms of parallelism ex-
pressivity and separation of concerns. To this end, we presented both a production
scenario and a synthetic one, the latter allowing us to test di�erent scenarios of paral-
lelism in isolated and combined fashion. We then have shown that these performance
models conform with real-life scenarios using a production use-case. We have also
shown that the parallelism expressivity of Madeus and Concerto is superior to the
state of the art, by �rst realizing that these of Madeus and Concerto are equivalent,
and then comparing Concerto to Aeolus, which has the best level of parallelism ex-
pressivity in the state of the art, and Ansible which is widely used in the industry.
This comparison was done thanks to performance models for each solution.

In terms of separation of concerns, we have shown that despite the increased par-
allelism expressivity, Madeus and Concerto both maintain a high level of separation
of concerns between three types of actors: module developers, recon�guration devel-
opers and system administrators. This is achieved thanks to the various kinds of
interfaces that they provide (components, behavioral interfaces, assemblies).



Chapter 7

Conclusion and Perspectives

7.1 Conclusion

Distributed computer systems are now commonplace and, for some of them, have
become critical. Deployment and recon�guration of distributed systems are complex
tasks because of the complexity of the software and infrastructures involved, especially
with the advent of infrastructures such as fog and edge computing. For this reason,
many solutions assist in the deployment and recon�guration of distributed systems,
and in particular in the execution step of the MAPE-K loop.

In this thesis, we have �rst presented existing solutions to assist in the execution of
recon�guration. The analysis of these solutions have led us to notice that they all fall
short of providing at the same time genericity, parallelism expressivity and separation
of concerns. More precisely, generic recon�guration frameworks make a trade-o�
between parallelism expressivity and separation of concerns using abstractions over
the life-cycle of the modules of distributed systems.

Our �rst contribution, Madeus, addresses this issue in the speci�c case of deploy-
ment. It is a formal component model in which each module of a distributed system
is represented as a component. The interface of these components, i.e., their require-
ments and what it provides, are clearly de�ned using ports. At the same time, the
deployment life-cycle of each module can be de�ned with a high degree of parallelism.
Parallelism between distinct modules is also possible thanks to �ne-grained dependen-
cies between them made possible by the fact that the ports are linked to the life-cycles.
A formal semantics is provided, as well as a performance model which allows to de�ne
the total execution time of a deployment as a function of the atomic deployment ac-
tions that it executes. Overall, parallelism expressivity is obtained thanks to the high
level of parallelism inside each component and among components, while separation
of concerns is obtained thanks to the clear interface made of ports.

Our second contribution, Concerto, extends Madeus for general recon�guration.
It does so in two ways. First, by introducing the concept of behaviors, which cor-
respond to high-level actions one might want to perform on each module. Second,
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by providing a recon�guration language which allows to add or delete components,
change the connections between their ports and triggering the execution of behaviors
inside components asynchronously. A formal semantics is also provided, as well as a
performance model which allows to de�ne the total execution time of a recon�guration
program as a function of the atomic recon�guration actions that it executes. Finally,
behavioral interfaces are views of Concerto components which contain all and only
the information (contained in the model) required to perform recon�guration with
a given component. An algorithm is presented to generate the behavioral interface
of any Concerto component. Overall, parallelism expressivity is obtained thanks to
the high level of parallelism inside each component and among components and to
the asynchronicity of the recon�guration language, while separation of concerns is
obtained thanks to the clear interface made of ports and behavioral interfaces, which
abstract away details which are of no use to the recon�guration developer.

We introduced implementations of Madeus and Concerto, which we used to eval-
uate our work. We then presented two use-cases. First, a production use-case con-
sisting in deploying a centralized database, recon�guring it to become a decentralized
database, and then recon�guring it again to change its number of nodes. Second,
synthetic use-cases showcasing di�erent types of parallelism. We used the production
use-case to prove the feasibility of our solution and evaluate the precision of the per-
formance model in a real scenario. We then used the synthetic use-cases to determine
precisely the gain in parallelism expressivity. Finally, we have discussed the separa-
tion of concerns of Madeus and Concerto. Overall, we have shown that Madeus and
Concerto have a higher level of parallelism expressivity than their counterparts while
being generic and conserving a good level of separation of concerns between module
developers, recon�guration developers and system administrators.

7.2 Perspectives

This work can be extended in multiple directions. First, Madeus and Concerto are
formally de�ned, which can be used with formal methods to provide additional guar-
antees, perform automatic inference of recon�guration programs, etc. Second, Madeus
and Concerto were conceived with parallelism in mind, which could be used to al-
lows concurrent recon�gurations to occur or decentralize their execution. Third,
behavioral interfaces are a big step for separation of concerns of Concerto. This sep-
aration of concerns could be extended further by adding more abstractions on top
of both Madeus and Concerto, such as composite components. Finally, we do not
address fault-tolerance in this work, and even though the users can implement fault-
tolerance mechanisms using Concerto's switches for example, dedicated mechanisms
would make fault-tolerance in Madeus and Concerto more practical.
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Formal guarantees Both Madeus and Concerto are formally de�ned, and in par-
ticular their operational semantics are formally de�ned. This makes it possible to
perform static analysis on the components and assemblies. This could be used to
make sure that models are consistent, and to make sure that for a given assembly or
a given recon�guration program deadlocks are not introduced. In the case of Madeus,
some work has already been done in this direction [93].

Given a recon�guration program, a valuable guarantee to have is that it will ter-
minate. Also, it could be interesting in some situations to ensure that two events (for
example reaching a place in two di�erent components) always happen in the same
order to make sure that a recon�guration designer did not introduce unwilling errors.
It could also be interesting to ensure that a given property is an invariant during
the execution of the recon�guration, in particular when executing a recon�guration
program designed by someone else. For instance, one could check that some compo-
nent will not be a�ected by the recon�guration, or that some transitions will never
be executed etc.

These checks could be performed at multiple stages: when designing components,
when designing Madeus assemblies or Concerto recon�guration programs and right
before executing one (at run-time). This would increase the safety of these procedures
that are not risk-free when they a�ect critical systems or services. Furthermore risks
are greater by introducing separation of concerns, thus needing to ensure that third-
party assemblies or programs comply with our expectations.

Automatic correct-by-design inference of recon�guration programs In Con-
certo, recon�guration programs are imperative in the sense that they are a sequence
of operations to perform on an existing assembly. While this approach makes sense,
this is often not how recon�guration developers approach the design of a recon�g-
uration program. When an assembly needs to be changed by adding or removing
components, one intuitively thinks of the desired result, not of the sequence of steps
to get there. In other cases, one might want to perform a given operation on an
existing component by executing a sequence of behaviors. However, executing these
behaviors may only be possible by executing other behaviors in other components
(for example when a provide port currently in use would become inactive).

Because Concerto is formally de�ned, it could be possible to generate recon�gu-
ration programs which satisfy a set of requirements, such as producing an assembly
B starting from an assembly A, or coming back to the original assembly after having
executed a given behavior. A selection among the possible programs could then be
done either automatically (e.g., those which execute less transitions) and/or manu-
ally. This would greatly simplify the process of designing complex recon�guration
programs, while ensuring that they are correct by construction.

Concurrent execution of recon�guration programs In large systems which
use autonomic computing to adapt to their environment, the need to perform a given
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change is not always anticipated. In a traditional autonomic loop (modeled as a
MAPE-K loop), only one recon�guration can be executed at any given time, and if
any even occurs after the analysis phase, it will only be taken into consideration after
the current cycle has ended. However, alternative approaches exist (e.g., multiple
parallel MAPE-K loops, event-based methods) in which multiple recon�gurations
may occur at the same time.

Concerto currently does not support this approach. Its semantics only allows the
execution of a single recon�guration program, and once one is executing it cannot be
canceled. There are multiple ways in which this could be overcome. First, Concerto
could support the execution of multiple recon�gurations out of the box, which should
not be di�cult to do given the asynchronous nature of its recon�guration language.
However, it would be quite hard to provide safety guarantees in this case. A second,
perhaps more practical approach, would be to provide the ability to automatically
merge two recon�guration programs, while handling potential con�icts automatically
if possible. Because splitting a Concerto recon�guration program in two gives two
valid programs, when a new recon�guration should occur, it would be possible to sus-
pend the execution of the current program and try to merge the new recon�guration
program with the remaining instructions that have not yet been executed. Formal
methods could then be used, as explained previously, to ensure that the newly ob-
tained program terminated and complies with what is expected.

Decentralization of the execution In large distributed systems, it is well-known
that single points of failure are to be avoided. Currently, the execution of Madeus
and Concerto are centralized, which creates a single point of failure. This could be
overcome by replicating the current state of the system on multiple machines, with
one of them active (actually executing deployment or recon�guration) and the other
ones passive, ready to take over in case of failure of the �rst machine. However,
this is not the only problem introduced by a centralized execution. First, in large
system if all actions must be triggered from one node this could lead to network
congestion, in particular when managing thousands or millions of nodes. Second, in
emerging infrastructures such as fog or edge computing, the inability for two nodes
to communicate is not necessarily considered as an exceptional error but is rather to
be expected.

To overcome these problems, Madeus and Concerto would need to drop the central
and exact representation of the whole system, and instead rely on a partial represen-
tation. This would allow to have multiple Madeus or Concerto execution nodes, each
with an exact representation of a part of the system and a partial representation of the
rest of the system. By ensuring that one execution node exists in each area of the net-
work that might become isolated, local recon�gurations could always be performed.
When executing recon�gurations which span over multiple areas, the execution nodes
would have to collaborate.

We believe that this approach is feasible because of the port-based interactions



CHAPTER 7. CONCLUSION AND PERSPECTIVES 155

between components. If each execution node is responsible for a part of the assembly,
the only information required to know if another execution node is a�ected would be
the list of connections between local ports and ports from other parts of the assembly
(existing or to be created by a recon�guration program). When this is the case, the
two execution nodes could collaborate and would not need to inform other nodes.

Additional abstractions In Madeus and Concerto, there exist two levels of rea-
soning: component and assembly. Component developers reason about the life-cycles
of the components they develop, while recon�guration developers design assemblies
or recon�guration programs to generate or modify assemblies. However, one could ar-
gue that intermediate levels should exist. For example, if we consider a Map-Reduce
system, it can be part of a larger assembly while still being composed of multiple
components. The Map-Reduce expert is neither a component developer nor a recon-
�guration developer for the distributed system that uses a Map-Reduce architecture
among other elements.

A way to address this problem would be to provide the ability to de�ne compos-
ite components in Madeus and Concerto. Composite components are a well-known
feature of some components models and designate components which are made of
other components (we can see them as sub-assemblies). In our case, the Map-Reduce
expert could assemble components into a map-reduce composite component, which
could then be used directly by recon�guration developers.

Composite components could also be parametric. While Concerto's recon�gu-
ration language can already be parametric by adding simple conditional and loop
constructs, having the ability to directly use parametric components would increase
separation of concerns.

Life-cycle patterns speci�c to common use-cases would also increase separation
of concerns and ease the use of Concerto. For example, life-cycle patterns could be
provided for virtual machine provisioning or containers commissioning.

Fault-tolerance Finally, Madeus and Concerto do not provide dedicated mech-
anisms for fault-tolerance. If the action associated with a transition fails and the
component developer did not plan for this to happen, the execution will either be
stuck (if the action does not terminate) or attempt to continue as if nothing hap-
pened (if the action does terminate), most likely producing an inconsistent state for
the system being deployed or recon�gured.

Concerto has the concept of switch, which allows to choose one path or another
for a behavior depending on what happened during the execution of the action (in
particular the occurrence of errors). However, ensuring that the application can
recover or goes into an error state, as well as reporting that an error occurred is the
responsibility of the component developer.

This could be overcome by having a dedicated part of the life-cycle of each com-
ponent recognized as an error state, and take this into account at the assembly level
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(either by automatically performing recovery actions, such as replacing the component
with another one, or by reporting the error). Other (possibly complementary) ap-
proaches include requiring components to have inverse transitions for each transition,
which would allow to roll back the recon�guration program in case of error.
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Résumé : Les systèmes informatiques distribués, qui 
fonctionnent sur plusieurs ordinateurs, sont 
désormais courants et même utilisés dans des 
services critiques. Cependant, ces systèmes 
deviennent de plus en plus complexes, en termes 
d'échelle, de dynamicité et de qualité de service 
attendue. 
La reconfiguration de systèmes distribués consiste 

à modifier leur état durant leur exécution. Les 
systèmes distribués peuvent être reconfigurés pour 
plusieurs raison, parmi lesquelles leur déploiement, 
leur mise à jour, leur adaptation pour obéir à de 
nouvelles contraintes (en termes de capacité 
utilisateurs, d'efficacité énergétique, de fiabilité, de 
coûts, etc.) ou même le changement de leurs 
fonctionnalités. 
Les systèmes de reconfiguration existants ne 

parviennent pas à fournir en même temps  une 
 

bonne expressivité du parallélisme dans les actions 
de reconfiguration et la séparation des 
préoccupations entre les différents acteurs qui 
interagissent avec le système. 
  L'objectif de cette thèse est de prouver que ces 
propriétés peuvent être conciliées en modélisant 
précisément le cycle de vie de chaque module des 
systèmes distribués, tout en fournissant des 
interfaces appropriées entre différents niveaux de 
conception. Deux modèles formels implantant cette 
idée sont fournis, un pour le cas particulier du 
déploiement et un pour la reconfiguration. Une 
évaluation est réalisée à la fois sur des cas d'usage 
synthétiques et réels et montre que ces modèles ont 
un plus haut niveau d'expressivité du parallélisme 
que leurs homologues tout en conservant un bon 
niveau de séparation des préoccupations. 

 

Title :  Reconciling Parallelism Expressivity and Separation of Concerns in Reconfiguration of 
Distributed Systems 
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Abstract : Distributed computer systems, which run 
on multiple computers, are now commonplace and 
used even in critical systems. However, these 
systems are becoming more and more complex, in 
terms of scale, dynamicity and expected quality of 
service. 
Reconfiguration of distributed systems consists in 

changing their state at runtime. Distributed systems 
may be reconfigured for many reasons, including 
deploying them, updating them, adapting them to 
fulfill new requirements (in terms of user capacity, 
energy efficiency, reliability, costs, etc.) or even 
changing their capabilities. 
Existing reconfiguration frameworks fall short of 

providing at the same time parallelism expressivity 
 

and separation of concerns between the different 
actors interacting with the system. 
  The focus of this thesis is to prove that these 
properties can be reconciled by modelling precisely 
the life-cycle of each module of distributed systems, 
while providing appropriate interfaces between the 
different levels of conception. Two formal models 
implementing this idea are provided, one for the 
specific case of deployment and one for 
reconfiguration. Evaluation is performed on both 
synthetic and real use-cases and show that these 
models have a higher level of parallelism 
expressivity than their counterparts while 
conserving a good level of separation of concerns. 

 


	Introduction
	Distributed Systems and their Modeling
	Distributed Infrastructures
	Types of resources
	Provisioning computing resources
	Direct access
	Clusters and grids
	Cloud computing

	Accessing remote computing resources
	Direct shell access
	Batch access


	Distributed Software
	Architecture of distributed applications
	Component-based representation
	Life-cycle of distributed applications

	Reconfiguration of Distributed Applications
	Overview
	Typical types of reconfiguration
	Deployment
	Scaling
	Update
	Migration

	Autonomic computing

	Parallelism in Reconfiguration
	Overview
	Modeling sets of reconfiguration actions with dependency graphs
	Types of parallelism in reconfiguration of distributed systems
	At the host level
	At the module level
	Within modules


	Conclusion

	Reconfiguration of Distributed Systems: State of the Art
	Scope
	Analysis criteria
	Reconfigurable elements
	Types of reconfiguration operations supported
	Life-cycle handling
	Parallelism of reconfiguration tasks
	Separation of concerns
	Formal modeling

	Configuration management tools
	Imperative SCM tools
	Declarative CM tools

	Control component models
	Analysis
	The special case of imperative SCM tools
	Correlations between analysis criteria
	Problem: how to reconcile separation of concerns and performance?

	Conclusion

	The Madeus Deployment Model
	Overview
	Component
	Assembly
	Execution

	Formal Model
	Component
	Internal-net
	Interface and bindings

	Assembly
	Operational semantics
	Configuration
	Execution
	Semantic rules
	Discussion


	Performance Model
	Dependency graph
	Assumptions
	Dependency graph of a component
	Vertices
	Arcs

	Dependency graph of an assembly
	Duration of the deployment process

	Discussion
	Conclusion

	The Concerto Reconfiguration Model
	Overview
	Component type
	Assembly
	Reconfiguration Program
	Changes from Madeus to Concerto

	Formal Model
	Component Type
	Component Instance
	Assembly and Reconfiguration Program
	Operational Semantics
	Statuses of ports
	Evolution of component instances
	Reconfiguration instructions


	Performance Model
	Assumptions
	Reconfiguration dependency graph
	Example

	Behavioral Interfaces
	Definition
	Generating a behavioral interface
	Description of the algorithm
	Discussion


	Discussion
	Conclusion

	Evaluation
	Implementation
	Architecture of the implementation and design choices
	Programming language
	General architecture
	Execution

	Describing component types
	Describing reconfiguration programs
	Madeus abstraction layer

	Use-cases
	Production use-case
	Modules
	Reconfigurations
	Implementation details

	Synthetic use-cases
	Modules
	Reconfigurations
	Implementation details


	Performance models
	A performance model for Ansible
	A performance model for Aeolus
	Validation of Concerto's performance model

	Parallelism
	Accuracy of the performance model and execution times on a production use case
	Analysis of parallelism expressivity

	Separation of concerns
	Module developers
	Reconfiguration developers
	System administrators

	Conclusion

	Conclusion and Perspectives
	Conclusion
	Perspectives


