Avalon working group
Lyon, April 29th

A Reconfigurable

Component Model for HPC

Vincent Lanore?!, Christian Pérez?

' : ENS de Lyon, % : Inria
LIP laboratory, Avalon Team
France

A Reconfigurable Component Model for HPC

CBSE'15

High-Performance Computing

Goal: run the biggest possible
applications
m eg, large simulations

m months/years of sequential
computing time

- . GYSELA 5D
using cutting edge hardware years of sequential computing time

source: master omp, Paris13

m very parallel

Challenge: scalability

A scientific mesh-based
Tianhe-2 simulation
3,120,000 cores source: NTUA,

source: top500.0rg school of mechanical engineering

A Reconfigurable Component Model for HPC CBSE'15

HPC Component Models

Examples: CCA, L2C OSSA. e

Typically: cm
" P Cmp
Core Niter Niter Core

B low-level

m C++/FORTRAN-level m Mpi '

abstractions Con!

Mpi || Mpi

m non-hierarchical | Mpi il
m distributed el
B eg, message passing, e GTTh
remote method call Core con | Con

m process abstraction A jacobi solver assembly

on 4 processes

MPI = Message Passing Interface

CBSE'15

A Reconfigurable Component Model for HPC

Problem: Dynamic HPC Applications

Applications with...
B dynamic communication topology

B dynamic data structure

Not supported by HPC
component models

W reconfiguration needed

Examples T 2
: - T —
B Adaptive Mesh Refinement (AMR) AMR mesh.
B dynamic load balancing varying resolution

Goal of this talk:
HPC reconfigurable component model

A Reconfigurable Component Model for HPC

CBSE'15

Plan of the Talk

Context and related works
B Related work
B Our proposition
Presentation of the model, DirectMOD
B Assembly model
B Programming model
Implementation and evaluation
B Ring example
B DirectL2C
B Code and performance

Conclusions and perspectives

A Reconfigurable Component Model for HPC

CBSE'15

Reconfigurable Component Models

From the literature:

Examples Locking and Scalable? Reconf SE
representation properties

No reconfiguration CCA, L2C none up to the user poor
support
Global global MAPE global no good
reconfiguration
Composite-level Fractal, SOFA composite-level sometimes sometimes
controllers

Important parameters No model provides both

m locking granularity m scalable approach
m scalability m good SE properties for

® representation granularity reconfigurable assemblies
m ease of use H reuse

m separation of concerns

CBSE'15

A Reconfigurable Component Model for HPC

Our proposal: main ideas

Let users define locking units
B custom granularity / distribution - performance

Locking and Scalable? Reconf SE

representation properties
Domain-based user-defined yes ?2??
(domains)

To improve SE properties

B separate locking from representation and
transformation

Locking and Scalable? Reconf SE
representation properties

Domain-based + user-defined yes good
separation lock/transfo + separated

n A Reconfigurable Component Model for HPC

CBSE'15

A Formal Model

DirectMOD : Benefits
formal model B unambiguous specification
m full syntax B tech-agnostic

m transformation semantics B runtime representation

In addition :

B resource model
(see paper)

m call stack operational
semantics (see paper)

CBSE'15

n A Reconfigurable Component Model for HPC

DirectMOD Assembly Model

Elements
=] = B components

Compute —Q) > Compute é C()mponent | pO I’tS

~— port .
po Relations
€ reference _ .

m point-to-point
~&— OWner references

=1 =1

B owner (component-
Compute —O<€&——— Compute

port relation)

CBSE'15

A Reconfigurable Component Model for HPC

DirectMOD Domains

=1

Compute

=1

Compute

Compute

Compute

<€ domain

A Reconfigurable Component Model for HPC

New element:
domains

B manage a
subassembly

m unit of locking

m unit of internal
representation

B reconfigure their
contents

CBSE'15

DirectMOD Domains

=

Compute H—O—>»(O

=]

Compute

261

@)

=

5
5

<€ domain

Compute

=

Compute

A Reconfigurable Component Model for HPC

New element:
domains

B manage a
subassembly

m unit of locking

m unit of internal
representation

B reconfigure their
contents

CBSE'15

DirectMOD Transformations

origin =t

Insert |:> .
<& transformation

& state
topology

=1
destination c‘, >0 Compute

=] =]
Monitor applic ation Monitor
=]

=] =] =l =l
Compute Compute Compute Compute H— Compute

A Reconfigurable Component Model for HPC

CBSE'15

DirectMOD Transformation Adapters

Remove |:>

L4 A)
= | T
4 b '
Compute M Compute [—(O+—>3()— Compute
N !
\ .
'l

transformation adapter

Insert |:>

B special kind of port
m reference to transformation and application subassembly ﬂﬂm

A Reconfigurable Component Model for HPC

DirectMOD Programming Model

Locking/synchro Transformation Component
specialist programmer programmer

2 2 2
NP
o=

Locking Assembly
algorithms transformations Components

End user

R Reconfigurable
3 Q‘/@ assembly m
CBSE'1l5

A Reconfigurable Component Model for HPC

A C++/MPI Implementation

DirectL2C Provides

B DirectMOD implementation W remote basic reconfiguration
operations

B extension of L2C

m uses traditional HPC tech B transformation parsing and

execution
m C++ .
m MPI (Message Passing Interface) W helper classes for locking
m threads B interface and locking APIs
Components Files mLOC
L2C 37 79 4570
DirectL2C 3 10 1118

dpL2C

A Reconfigurable Component Model for HPC

DirectL2C in Practice

Component

interface declaration

fonctionnal code (L2C API + extension)

(C++, helper class) locking instrumentation
(conforming to locking APT)

Domain Starting assembly
locking code —I_) S0 assembly description
(C++, using locking API) (L2C assembly descriptor)
Transformation
transformation description —'—> DirectL.2C launcher
(high level API)

dpL2C

A Reconfigurable Component Model for HPC

Evaluation: Easy to Write?

Implemented: ring Ring assembly LOC
assembly Function C++ LOC
B insert new component Transformation 8
B remove component Non-functional sync 20
Code instrumentation 13
L2C overhead 7
Prel imi na ry DirectL2C overhead 6
implementation Functional code 31
o Other 3
B not yet fully optimized TOTAL 88

B shortest possible code
B short and easy

transformation code

B large and difficult
synchronization code

CBSE'15

A Reconfigurable Component Model for HPC

Evaluation: scalable?

Testing our ring Preliminary experiments
assembly on Grid'5000
B one Component per core at directL2C ring assembly execution time on Grid'5000

startup 1al | | | | |
m fixed number of insert and = 127
remove transformations ' b

per starting component >
06 r

B one domain per component
(fully distributed)

04

Normalized execution time

0.2 Experiment on Edel cluster —e— -
Experiment on Graphene cluster —e—

0

0 20 40 60 80 100 120 140

Number of cores

B acceptable scalability up to

CBSE'15

128 cores

A Reconfigurable Component Model for HPC

Conclusion and Perspectives

Presented DirectMOD Perspectives

B a reconfigurable B improve evaluation
component model = ongoing work on
m formal a complex benchmark
m experiments on large platform

B +implementation

(DirectlL2C) B ease domain development
 preliminary evaluation ® ongoing work on automating

m short and easy to write code certain locking patterns

m scalability up to 128 cores B transformation
specification

B genericity

(eg, Curie)

m compact language

A Reconfigurable Component Model for HPC

CBSE'15

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

