
CBSE'15A Reconfigurable Component Model for HPC
 CBSE'15A Reconfigurable Component Model for HPC1 Montréal

Vincent Lanore1, Christian Pérez2

1 : ENS de Lyon, 2 : Inria
LIP laboratory, Avalon Team
France

A Reconfigurable
Component Model for HPC

Avalon working group
Lyon, April 29th

 CBSE'15A Reconfigurable Component Model for HPC2 Montréal

High-Performance Computing

Tianhe-2
3,120,000 cores
source: top500.org

years of sequential computing time
source: master omp, Paris13

Goal: run the biggest possible
applications

 eg, large simulations

 months/years of sequential
computing time

using cutting edge hardware

 very parallel

Challenge: scalability

A scientific mesh-based
simulation

source: NTUA,
school of mechanical engineering

 CBSE'15A Reconfigurable Component Model for HPC3 Montréal

HPC Component Models

Examples: CCA, L2C

Typically:

 low-level

 C++/FORTRAN-level
abstractions

 non-hierarchical

 distributed

 eg, message passing,
remote method call

 process abstraction
A jacobi solver assembly

on 4 processes

MPI = Message Passing Interface

 CBSE'15A Reconfigurable Component Model for HPC4 Montréal

Problem: Dynamic HPC Applications

Goal of this talk:
HPC reconfigurable component model

Applications with...

 dynamic communication topology

 dynamic data structure

Not supported by HPC
component models

 reconfiguration needed

Examples

 Adaptive Mesh Refinement (AMR)

 dynamic load balancing
AMR mesh,

varying resolution

 CBSE'15A Reconfigurable Component Model for HPC5 Montréal

Plan of the Talk

Context and related works

 Related work

 Our proposition

Presentation of the model, DirectMOD

 Assembly model

 Programming model

Implementation and evaluation

 Ring example

 DirectL2C

 Code and performance

Conclusions and perspectives

 CBSE'15A Reconfigurable Component Model for HPC7 Montréal

Reconfigurable Component Models

Examples Locking and
representation

Scalable? Reconf SE
properties

No reconfiguration
support

CCA, L2C none up to the user poor

Global
reconfiguration

global MAPE global no good

Composite-level
controllers

Fractal, SOFA composite-level sometimes sometimes

From the literature:

No model provides both
 scalable approach

 good SE properties for
reconfigurable assemblies

 reuse

 separation of concerns

Important parameters
 locking granularity

 scalability

 representation granularity

 ease of use

 CBSE'15A Reconfigurable Component Model for HPC8 Montréal

Our proposal: main ideas

Let users define locking units

 custom granularity / distribution → performance

To improve SE properties

 separate locking from representation and
transformation

Locking and
representation

Scalable? Reconf SE
properties

Domain-based user-defined
(domains)

yes ???

Locking and
representation

Scalable? Reconf SE
properties

Domain-based +
separation lock/transfo

user-defined
+ separated

yes good

 CBSE'15A Reconfigurable Component Model for HPC9 Montréal

A Formal Model

DirectMOD :
formal model

 full syntax

 transformation semantics

In addition :

 resource model
(see paper)

 call stack operational
semantics (see paper)

Benefits

 unambiguous specification

 tech-agnostic

 runtime representation

 CBSE'15A Reconfigurable Component Model for HPC10 Montréal

DirectMOD Assembly Model

Elements

 components

 ports

Relations

 point-to-point
references

 owner (component-
port relation)

 CBSE'15A Reconfigurable Component Model for HPC11 Montréal

DirectMOD Domains

New element:
domains

 manage a
subassembly

 unit of locking

 unit of internal
representation

 reconfigure their
contents

 CBSE'15A Reconfigurable Component Model for HPC12 Montréal

DirectMOD Domains

New element:
domains

 manage a
subassembly

 unit of locking

 unit of internal
representation

 reconfigure their
contents

 CBSE'15A Reconfigurable Component Model for HPC13 Montréal

DirectMOD Transformations

 CBSE'15A Reconfigurable Component Model for HPC14 Montréal

DirectMOD Transformation Adapters

 special kind of port

 reference to transformation and application subassembly

 CBSE'15A Reconfigurable Component Model for HPC15 Montréal

DirectMOD Programming Model

 CBSE'15A Reconfigurable Component Model for HPC17 Montréal

A C++/MPI Implementation

Components Files mLOC

L2C 37 79 4570

DirectL2C 3 10 1118

DirectL2C

 DirectMOD implementation

 extension of L2C

 uses traditional HPC tech

 C++

 MPI (Message Passing Interface)

 threads

Provides

 remote basic reconfiguration
operations

 transformation parsing and
execution

 helper classes for locking

 interface and locking APIs

 CBSE'15A Reconfigurable Component Model for HPC18 Montréal

DirectL2C in Practice

 CBSE'15A Reconfigurable Component Model for HPC19 Montréal

Evaluation: Easy to Write?

Function C++ LOC

Transformation 8

Non-functional sync 20

Code instrumentation 13

L2C overhead 7

DirectL2C overhead 6

Functional code 31

Other 3

TOTAL 88

Ring assembly LOC

 short and easy
transformation code

 large and difficult
synchronization code

Implemented: ring
assembly

 insert new component

 remove component

Preliminary
implementation

 not yet fully optimized

 shortest possible code

 CBSE'15A Reconfigurable Component Model for HPC20 Montréal

Evaluation: scalable?

Preliminary experiments
on Grid'5000

Testing our ring
assembly

 one component per core at
startup

 fixed number of insert and
remove transformations
per starting component

 one domain per component
(fully distributed)

 acceptable scalability up to
128 cores

 CBSE'15A Reconfigurable Component Model for HPC21 Montréal

Conclusion and Perspectives

Presented DirectMOD

 a reconfigurable
component model

 formal

 +implementation
(DirectL2C)

 preliminary evaluation

 short and easy to write code

 scalability up to 128 cores

Perspectives

 improve evaluation

 ongoing work on
a complex benchmark

 experiments on large platform
(eg, Curie)

 ease domain development

 ongoing work on automating
certain locking patterns

 transformation
specification

 genericity

 compact language

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

