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High-Performance Computing

Tianhe-2
3,120,000 cores
source: top500.org

years of sequential computing time
source: master omp, Paris13

Goal: run the biggest possible 
applications

 eg, large simulations

 months/years of sequential 
computing time

using cutting edge hardware

 very parallel

Challenge: scalability

A scientific mesh-based
simulation

source: NTUA,
school of mechanical engineering
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HPC Component Models

Examples: CCA, L2C

Typically:

 low-level

 C++/FORTRAN-level 
abstractions

 non-hierarchical

 distributed

 eg, message passing,
remote method call

 process abstraction
A jacobi solver assembly

on 4 processes

MPI = Message Passing Interface
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Problem: Dynamic HPC Applications

Goal of this talk:
HPC reconfigurable component model

Applications with...

 dynamic communication topology

 dynamic data structure

Not supported by HPC 
component models

 reconfiguration needed

Examples

 Adaptive Mesh Refinement (AMR)

 dynamic load balancing
AMR mesh,

varying resolution
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Plan of the Talk

Context and related works

 Related work

 Our proposition

Presentation of the model, DirectMOD

 Assembly model

 Programming model

Implementation and evaluation

 Ring example

 DirectL2C

 Code and performance

Conclusions and perspectives
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Reconfigurable Component Models

Examples Locking and 
representation

Scalable? Reconf SE 
properties

No reconfiguration 
support

CCA, L2C none up to the user poor

Global 
reconfiguration

global MAPE global no good

Composite-level 
controllers

Fractal, SOFA composite-level sometimes sometimes

From the literature:

No model provides both
 scalable approach

 good SE properties for 
reconfigurable assemblies

  reuse

  separation of concerns

Important parameters
 locking granularity

  scalability

 representation granularity

  ease of use
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Our proposal: main ideas

Let users define locking units

 custom granularity / distribution → performance

To improve SE properties

 separate locking from representation and 
transformation

Locking and 
representation

Scalable? Reconf SE 
properties

Domain-based user-defined
(domains)

yes ???

Locking and 
representation

Scalable? Reconf SE 
properties

Domain-based +
separation lock/transfo

user-defined
+ separated

yes good
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A Formal Model

DirectMOD :
formal model

 full syntax

 transformation semantics

In addition :

 resource model
(see paper)

 call stack operational 
semantics (see paper)

Benefits

 unambiguous specification

 tech-agnostic

 runtime representation
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DirectMOD Assembly Model

Elements

 components

 ports

Relations

 point-to-point 
references

 owner (component-
port relation)
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DirectMOD Domains

New element: 
domains

 manage a 
subassembly

 unit of locking

 unit of internal 
representation

 reconfigure their 
contents
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DirectMOD Domains

New element: 
domains

 manage a 
subassembly

 unit of locking

 unit of internal 
representation

 reconfigure their 
contents
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DirectMOD Transformations
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DirectMOD Transformation Adapters

 special kind of port

 reference to transformation and application subassembly
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DirectMOD Programming Model
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A C++/MPI Implementation

Components Files mLOC

L2C 37 79 4570

DirectL2C 3 10 1118

DirectL2C

 DirectMOD implementation

 extension of L2C

 uses traditional HPC tech

 C++

 MPI (Message Passing Interface)

 threads

Provides

 remote basic reconfiguration 
operations

 transformation parsing and 
execution

 helper classes for locking

 interface and locking APIs
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DirectL2C in Practice
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Evaluation: Easy to Write?

Function C++ LOC

Transformation 8

Non-functional sync 20

Code instrumentation 13

L2C overhead 7

DirectL2C overhead 6

Functional code 31

Other 3

TOTAL 88

Ring assembly LOC

 short and easy 
transformation code

 large and difficult 
synchronization code

Implemented: ring 
assembly

 insert new component

 remove component

Preliminary 
implementation

 not yet fully optimized

 shortest possible code
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Evaluation: scalable?

Preliminary experiments 
on Grid'5000

Testing our ring 
assembly

 one component per core at 
startup

 fixed number of insert and 
remove transformations 
per starting component

 one domain per component 
(fully distributed)

 acceptable scalability up to 
128 cores
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Conclusion and Perspectives

Presented DirectMOD

 a reconfigurable 
component model

 formal

 +implementation
(DirectL2C)

 preliminary evaluation

 short and easy to write code

 scalability up to 128 cores

Perspectives

 improve evaluation

 ongoing work on
a complex benchmark

 experiments on large platform
(eg, Curie)

 ease domain development

 ongoing work on automating 
certain locking patterns

 transformation 
specification

 genericity

 compact language
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