Sustainable electronics:

Towards the creation of a European ecosystem and e-waste reduction

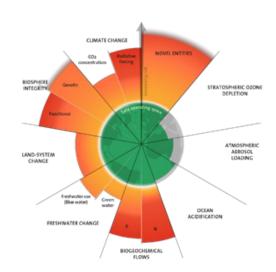
EECONE

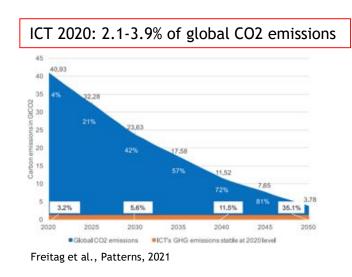
GreenDays 2024

Chiara Sandionigi, CEA Olivier Pedoussaut, 3DS

Agenda

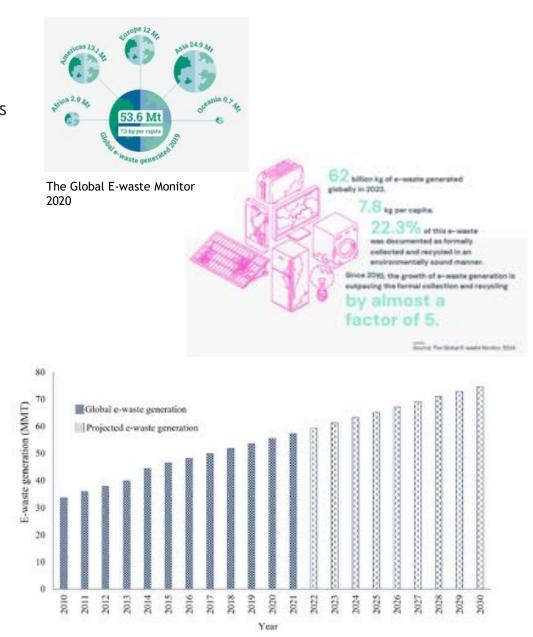
- **EECONE:** European Ecosystem for Green Electronics
- Eco-designed Remote Control Unit: From theory to practice
- Global vision: The paths towards eco-innovation


EECONE: European Ecosystem for Green Electronics



The impact of electronics on the environment

- Many different environmental impacts and benefits arising from electronics
- > Double role of electronics in the race towards environmental sustainability
 - Significant environmental impact arising from production and usage
 - Reduce or avoid GHG emissions



Azote for Stockholm Resilience Centre, based on analysis in Richardson et al 2023

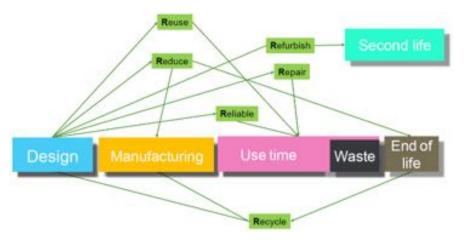
Focus on e-waste

- Many different environmental impacts arising from electronics
- E-waste: One of the fastest growing waste streams in EU
 - 5 times faster than e-waste recycling
- Obstacle to EU efforts to reduce its environmental footprint
- Potentially harmful materials polluting the environment
- Many rare materials
- Circular Economy Action Plan priority: E-waste prevention
 - ▶ Right to repair
 - Reusability improvement
 - Recycling rewards
- ESPR: Sustainable product design to reduce waste
- WEEE Directive

Electronic waste reduction: How to

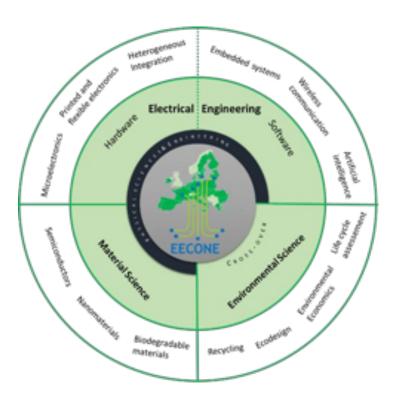
- ▶ EECONE mission: Electronic waste reduction
- Objective 1: Define environmentally sustainable ECS
 - > Tools and methods to design ECS for circularity
 - > At least 80% of 6R metrics implemented in tools
- Objective 2: Make environmentally sustainable ECS
 - > Techniques to boost circularity and decrease e-waste in new generation of electronics
 - ► At least 25% e-waste reduction
- Objective 3: Showcase environmentally sustainable ECS
 - > Demonstrate solutions along the value chain
 - 10 use cases with dedicated KPIs
- Objective 4: Build consciusness
 - Ecosystem creation
 - > At least 100 publications, over 10 recommendations to improve standards and regulations




EC, Waste Framework Directive

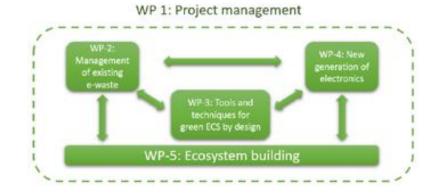
Strategy: The 6R concept

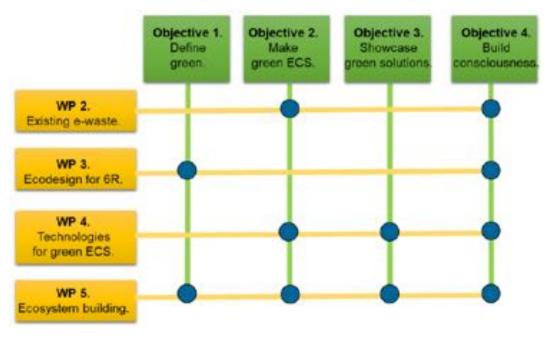
- **Reduce:** Reduction of materials by optimizing the use of resources
- **Repair**: Techniques for repairability facing the barriers
- **Reuse:** Capacity to use parts of a broken product as spare parts for another
- **Refurbish:** Second life, use of a product for another mission
- **Recycle:** Critical pillar of the European e-waste reduction strategy
- **Reliability**: Guarantee and maximisation of the lifetime


Consortium

▶ 49 partners from 16 Countries

Interdisciplinarity to link electronic industry with environmental and material sciences

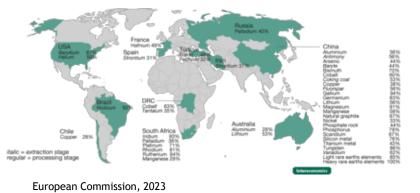




Work plan

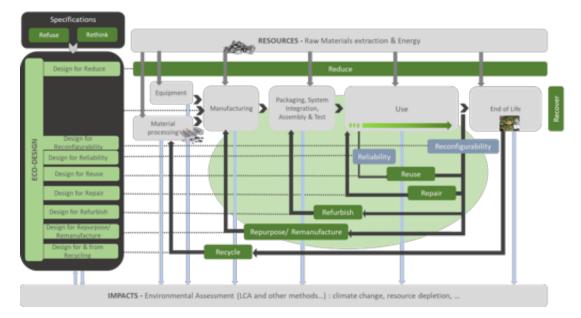
- Management of existing electronic waste
 - Focus on Reuse and Recycle
- Tools and techniques for environmentally sustainable ECS by design
 - Eco-design for 6R at IC, PCB and System levels
- New generation of electronics
 - Technologies for environmental sustainable ECS
- Ecosystem building
 - SWOT of the 6R approach
 - Survey and feedbacks on standards and regulations
 - Education content

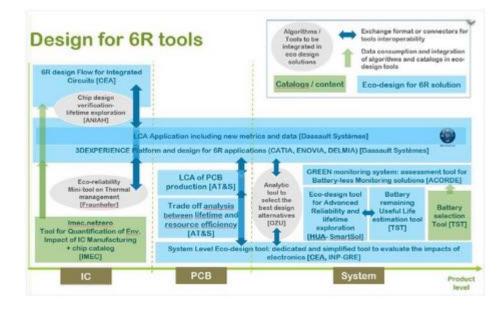
Management of existing electronic waste


- Objective: Improve circularity
 - Reuse, waste valorisation, recycling

- Step 1: Study the raw materials supply
- Step 2: Cross with critical and strategic material list
- Step 3: Create the mapping and define a list of EECONE most impacting raw materials

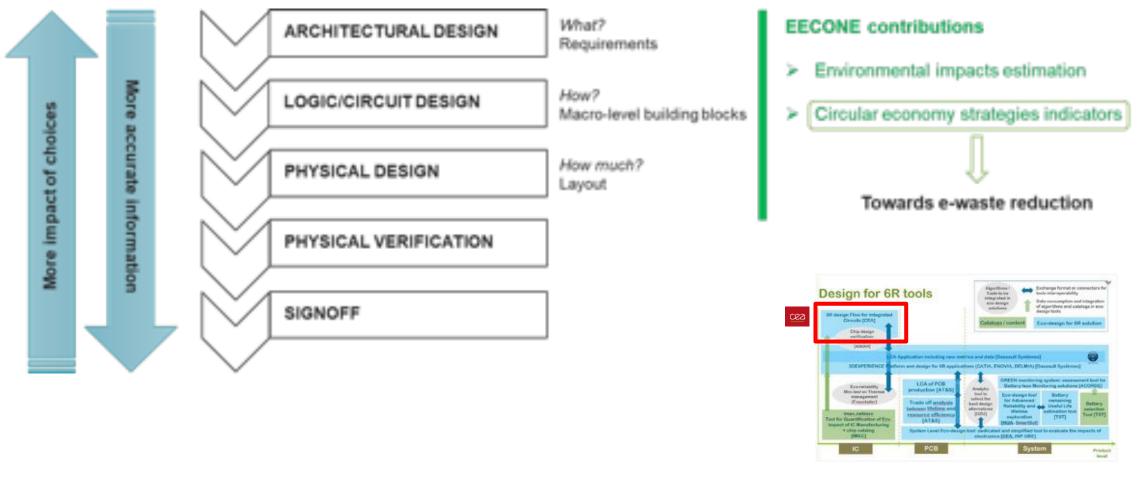
Recycling quiz: <u>https://www.eecone.com/eecone/survey/?id=90</u>

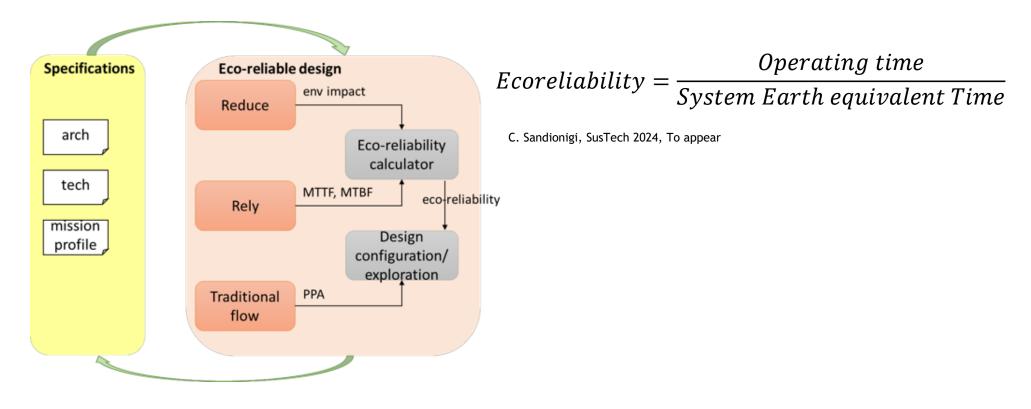




Design of environmentally sustainable ECS

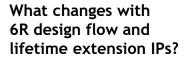
> Objective: Tools, metrics and guidelines to enhance future electronics design based on the 6R


EPoSS, ECS Sustainability and Environmental Footprint, White paper, July 2023, CEA contribution (B. Robin, C. Sandionigi)


Platform Element example: xR design flow for IC

From traditional design flow to eco-design flow for circularity

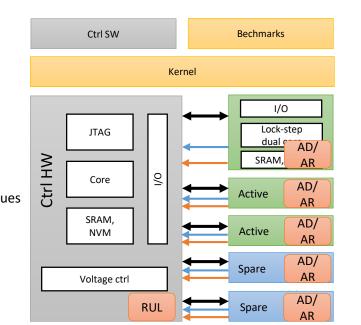
Platform Element example: xR design flow for IC (2/2)


- Current status: Eco-reliable design flow
- **E**co-reliability: Maximization of the reliability while minimizing the environmental impacts

New generation of electronics

- Objective: Reduction of electronic waste > 25%
 - Introduction of new materials
 - Improved manufacturing technologies to reduce the material usage
 - Modular designs
 - Novel techniques to increase the lifetime of electronics
- Activity example: New IPs to increase lifetime of IC
 - Monitoring of Remaining Useful Lifetime, auto-diagnostic, auto-reparability

Knowledge of environmental impacts


Optimized number of active and spare cores

Choice of reliability techniques driven by impacts

Information for reuse

Ecosystem building

- Have a clear view of ecosystem demands and offers
 - Surveys
 - Map requested needs and available expertise
 - Regularly on eecone.com
 - Standards and regulations
 - State of the art and recommendations

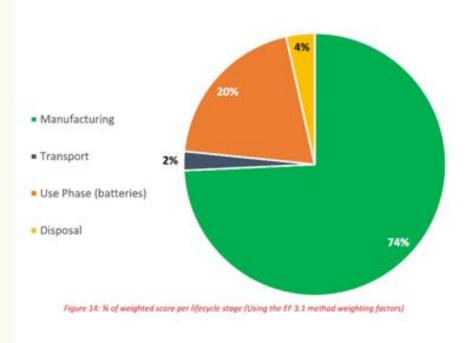
- EECONE contribution for the ecosystem
 - Dissemination
 - Networking events, webinars, publications
 - Education
 - Summer school and MOOC

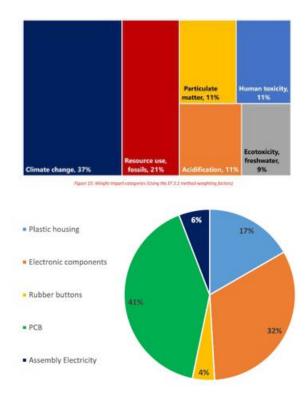
Showcase environmentally sustainable ECS

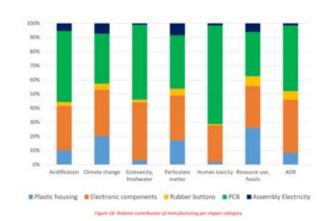
		Team	Title	WP-2	WP-3	WP-4
Automotive	UC-01	BOSCH, HTV, IZM, AT&S, ORBX, DTI & IFAG	Reducing eWaste from Electrical Control Units for Automotive Industry	\checkmark	\checkmark	\checkmark
	UC-02	VITESCO, SOITEC, SPHEREA, INP-Gr, AT&S, DASSAULT SYSTEM, PREMO & IFAG	Power Electronic Inverter, On-Board Charger and DCDC converters designed for reduced eWaste	\checkmark	\checkmark	\checkmark
	UC-03	DTI, MELSEN, HTV, SYNANO BV	Membrane switches improved via the 6R strategy		\checkmark	\checkmark
Consumer electronics	UC-04	4MOD, CEA, DTI, SYNANO BV	Eco-designed remote-control unit		\checkmark	\checkmark
	UC-05	ARCELIK, OzU, WEEECYCLING	Critical Raw Material Value Chain, Traceability Systems and Recycling Strategies in Appliances	\checkmark	\checkmark	
Health	UC-06	SAL, HTV, IFAT, PRELONIC, SYNANO BV, CSEM, ORBX			\checkmark	\checkmark
іст	UC-07	RISE, EcoDC, SVS, UCLouvain, IMEC, INP-Gre, CEA	Reducing data center eWaste via technical LCA- driven refresh and reuse	\checkmark	\checkmark	\checkmark
	UC-08	UCLouvain, IMEC, RISE, SPHEREA, Fhg IZM, CEA, THALES DIS	Service life extension of ICT user equipment toward Internet access within planetary boundaries	\checkmark	\checkmark	\checkmark
Aeronautics	UC-09	LDO, UniPG, LGE	Sensing electronics for health management system in an aeronautical structural component			\checkmark
Agriculture	UC-10	TST, PREMO, ACORDE, SSOL, CSEM, CSIC, DTI, UniPG, LGE	Green Soil Probe - Technologies for green IoT devices for agriculture	\checkmark	\checkmark	\checkmark

Eco-designed Remote Control Unit: From theory to practice

Rethinking remote controls with Eco-design principles

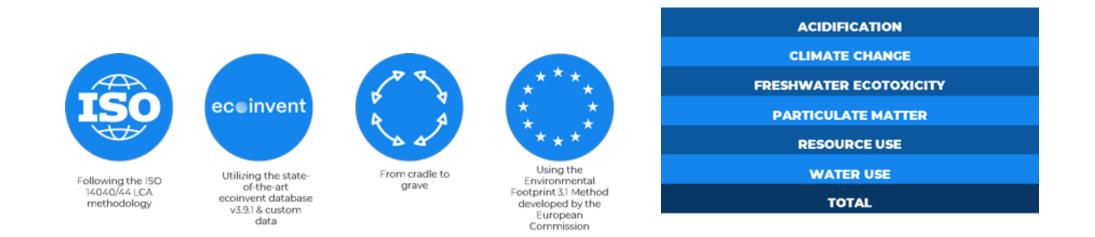

• While our primary focus is on Remote Control Units, the underlying principles we're developing here have the potential to be applied to a wide range of SMALL ELECTRONIC DEVICES.





Eco-Challenges in Remote Control Design

- Our quest for sustainable remote control design starts with a deep dive. 4MOD LCA expert conducted a comprehensive Life Cycle Assessment (LCA) of our benchmark RCU model.
- This LCA will serve as a crucial starting point, revealing the environmental challenges associated with its entire lifecycle – from material selection and manufacturing to use and end-of-life management.

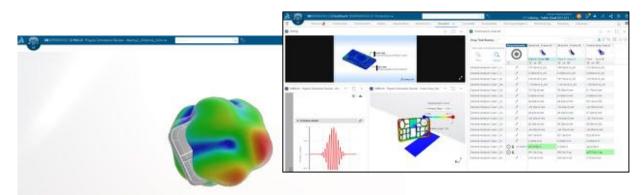


The Foundation for Our Eco-Design Approach

- Our study will use a recent LCA (July 2023, SimaPro version 9.5) as a starting point to explore new possibilities for more environmentally conscious remote control design. Our LCA is making 2 significant assumptions
 - ▶ The RCU will have a lifetime of 8 YEARS
 - > The specific use case of 250 key presses, 120 seconds of voice commands and 8 hours connect to set-up-box

A multifaceted eco-design approach

Our multifaceted approach leverages the full spectrum of eco-design available tools to create the most environmentally responsible remote controls possible.



Life Cycle Assessment

Research & Development

Multi-Physics Simulation

A 3-Year Journey Towards an Eco-Friendly Remote Control

To validate the effectiveness of our multifaceted eco-design approach, we will compare a standard RCU to two optimized versions designed with EECONE 6R principles in mind.

Overall, by avoiding the use of 4 AAA over 8 years and reducing the amount of material used in the PCB.

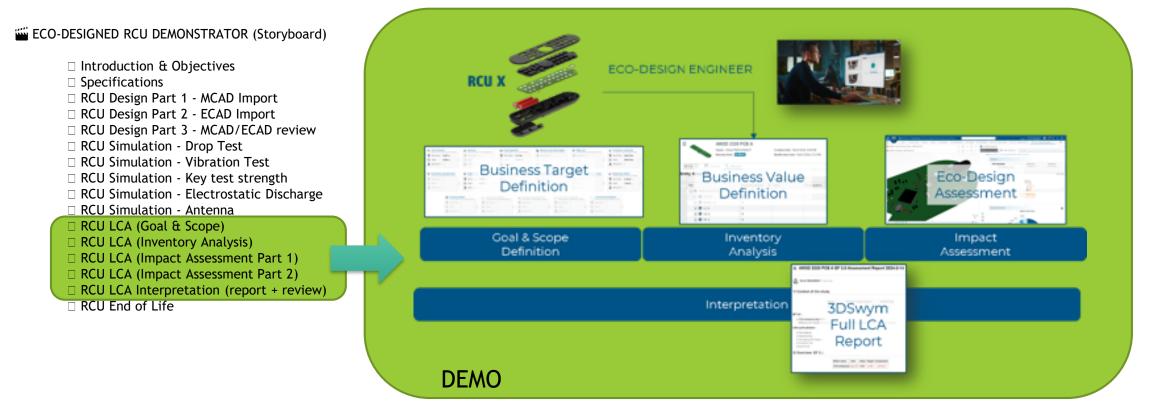
Our targeted RCU should produce 50% less E-Waste by weight compared to the one we used as our benchmark.

. エエエンエト	JTED TH HITHUP				
	Housing Materials	100% Chemically and Mechanically Recycled plastic. Rubber free keys utilizing an ultra-thin PE layer above the PV cells.			
	РСВ	100% replaced with PCB using low environmental impact flexible substrates, conductive inks and using an additive manufacturing process. Having at least 50% less Environmental impact then traditional PCB.			
	Use Phase	Ultra-low energy demand Bluetooth chip. The lower power consumption allows the batteries to be replaced with a Biobased photovoltaic cell and a hybrid supper cap.			
	End Of Life	RCU designed to be easily repairable Refurbished, no glue, PCB can be removed by hand without tools.			

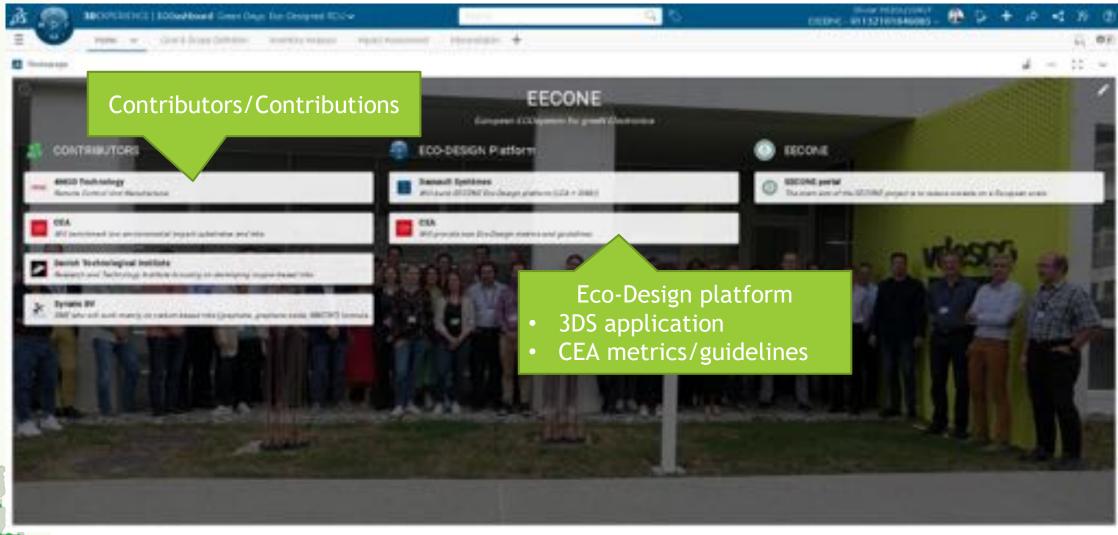
Housing Materials	70% Mechanically Recycled plastic		
РСВ	70-50% of traditional PCB replaced with PCB using low environment impact flexible substrates, conductive inks and using an additi- manufacturing process.		
Use Phase	Ultra-low energy demand Bluetooth Chip reducing AAA battery requirements from 8 to 4 over the 8-year use phase.		
End Of Life	RCU designed to be easily repairable Refurbishable, no glue, PCB can be removed by hand without tools.		

Housing Materials	Fossil fuel-based plastics used for plastic case and synthetic rubber buttons
РСВ	traditional FR4 and copper-based 2-layer PCB.
Use Phase	Standard Blue tooth Chip using 8 batteries over 8 years.
End Of Life	Not specifically designed for repair and disassembly

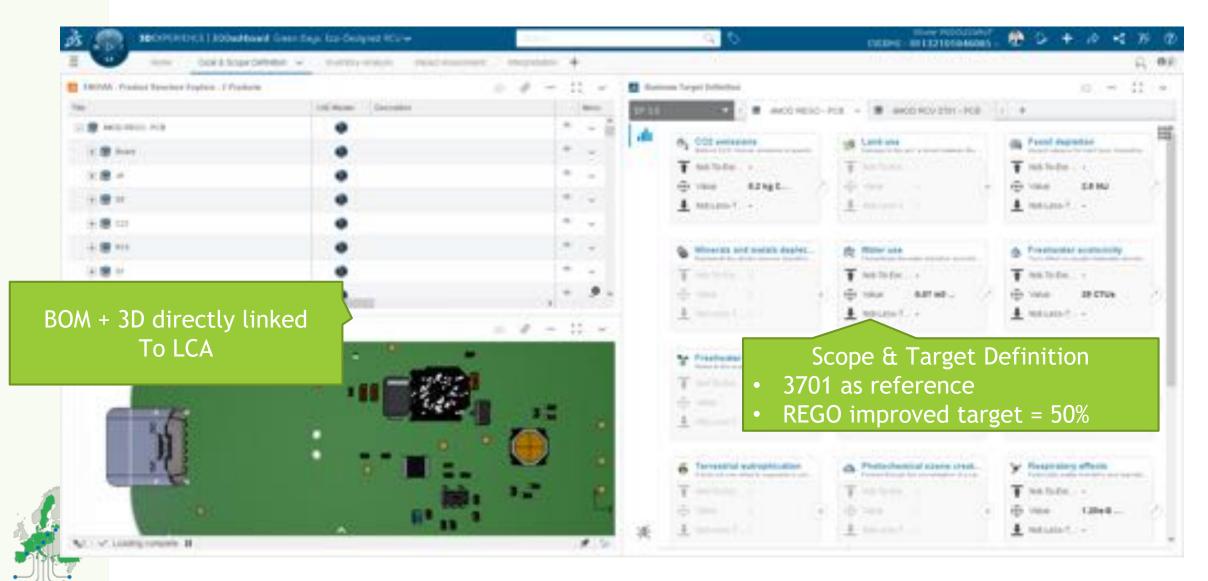
Ensuring Consistency and Measurable Progress


- ▶ To ensure a consistent and replicable approach for evaluating the sustainability of each RCU generation, we have identified a defined set of features and criteria for each of the RCU.
- By comparing these features across different RCU generations, we can accurately measure progress towards our eco-design goals.

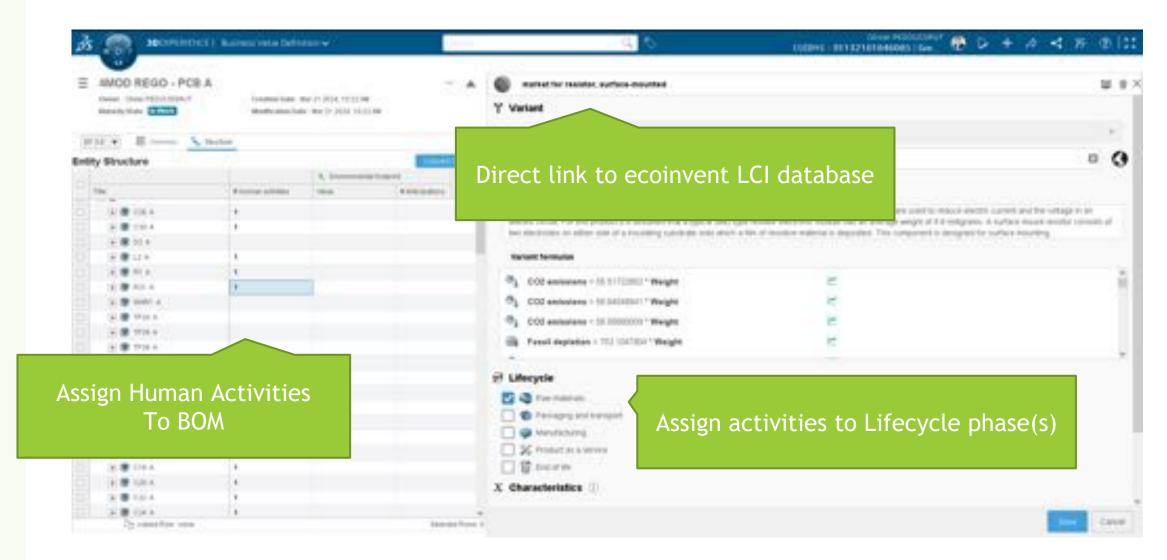
Non-exhaus	_	EECONE I				
tale of the Art he is tending agent that desert his besidens electrical conductivity	EECONE Innevation			37%		73%
inding Agent				370/		700/
	Lite answert type haneworky roundynt + temp typengi Recycling models, no primary betwee	Withstand vibrations	10 ~ 30Hz, Direction: 3 axis (K, Y, Z) 30 minutes each direction	A		4mmoo.
titury tellerise (a weeks)	Use adde-powered technology Use odde Tempency energy haneling	Withstand high humidity test for storage	95% humidity for 48 hours at 40°C			
	Une rechargeable balleries	Use a binding agent that doesn't hinders electrical conductivity	(heving zwitterion-like structures)			
late of the Art	EECONE Innevation		B-functional binders		GEINA	
attery		Operating conditions Temperature Range	10' ~ 50' C	GEN o 🛃	GENX	
		Operating conditions Storage Temperature	-20' = 60' C	· • •		a +
ubtactive reelisate with nazardbas phenotate, wester, bio-recompatibility		Operating conditions Humidity Range	20% - 70% RH	- ** -		
take of the Art	EBCOME innovation	For the 3 simulation scenarios, test the resonance frequency	OHz	** I & v		
ntenna + PCB Manufacturing		For the 3 simulation scenarios, test the realized gain	- 484			
ber m	Graphene or copper inti-	For the 3 simulation scenarios, test the matching level	40			
	Piedos organic substitutes / conductive mail	Criterian	RCU Value			
	EECONE Innevation	12 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22.000			
obeana		PERFORMANCES				
new of the ert of at an American (constitut of this angle)						
nate of the set technology refers to technology that is converting the or whit is considered prioris of the set is one field or islantly way tech mitrology is the most advanced technology available in a given field o	be in another, menerally speaking, state of the art					


Defining a Common Scenario for Sustainable RCU Design

- To ensure consistent and comparable evaluation of our remote controls across generations, we're developing a common scenario.
- This standardized scenario will replicate a typical usage pattern and environmental context. By applying this scenario to each RCU generation, we can objectively measure progress towards our sustainability goals and identify areas for further improvement.
- This approach ensures a level playing field for comparison and provides a reliable benchmark to track the evolution of our eco-friendly RCU designs.


24

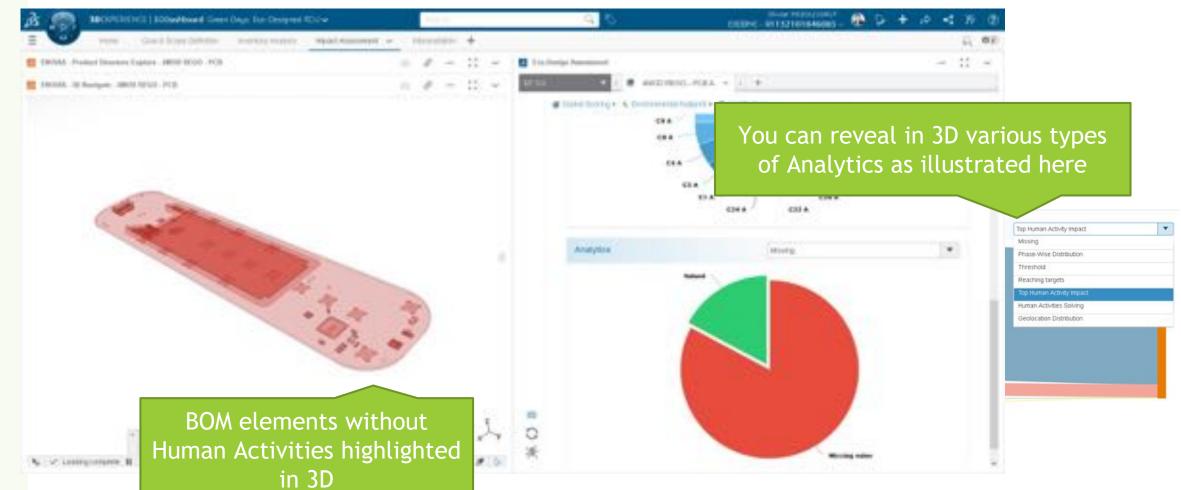
DEMO STEP 0: Intro



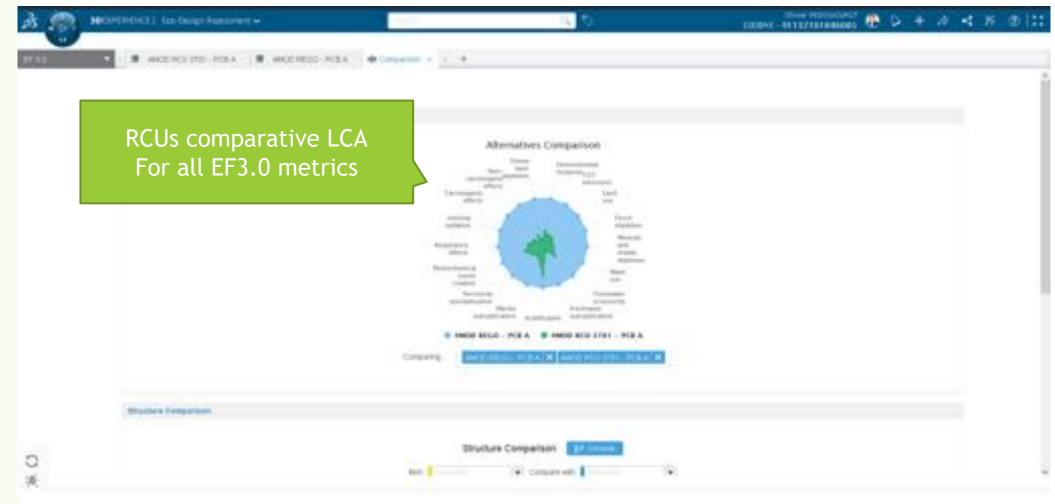
DEMO STEP 1: LCA/Define Scope & Target



DEMO STEP 2: Inventory Analysis



DEMO STEP 3.1: Impact Assessment (Global/Metrics)



DEMO STEP 3.2: Impact Assessment (Reveal in 3D)

DEMO STEP 3.3: Impact Assessment (comparative LCA)

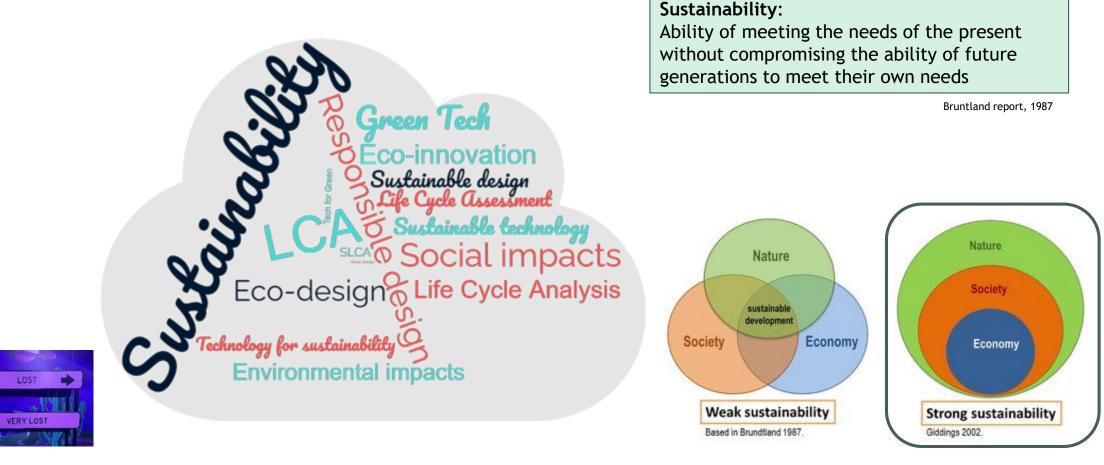
DEMO STEP 4: Interpretation

IDDOUBLOICE | IDDAHoard Cree Engr for Designed ICS v. . UKONG- #1132101646085 - 55 E Hillingto Carmon 10 Grant Castroll - 11 4MOD RCU 3701 - PCB A EF 3.0 Assessment Report 4MOD REGO - PCB A EF 3.0 Assessment Report -2024-3-21 2024-3-21 Onvier PEDOUSSAUT : Other PEDOUESAUT . . left () Note and techniques for prior \$1.0 for stronger INTO State and Including in the press ITTO 14 decises 1/ Context of the study 1/ Context of the study **Revisor** Report author Publish Data Revisors Report author Publish Data #ACD ROUBRY POE A OWAR PEDOURIAUT 2028.3.21 IMPOSITEDO FCE A Object PEDOUTGAUT 2004/8/21 ## 3.81 EF 3.0: Environmential Faolganet (Primita) + Environmental footprint (Pointa) Diamaga-Is the planet, meanured in Ponts. Demage to the planet, meanwait in Protein CO3 emergianie (kg CO3) : · CO2 emissions (kg CO2) : Matheast, CD: Harvan anniaisons of granithuse gases that cause anothermetial and some changes Method KCD: Network emissions of greethouse gears that cause emissionmental and social charges. · Land use (Pointa) · Land use (Points) : Cardage to the loss of traded balances the ansatz management the mechanical Waters, the physics-character Waters, the Carloga to the soil, is more between the errors resultance. The mechanical Titudius, the physical distribution, the groundwater regarisination and the brack production. groundwatter regeneration; and the boltic production. Forest depiction (MJ) : · Foest depletion (M.). impact sategory for foral fash. Impacting the recourt a Septement as energy cathers. Impact category for final fuely, impacting the resolution depletion as energy carriers. · Minerals and metals depiction (up 20) · Miniarals and metals depletion (by Sk) : Represents the aboot resource depindion, quantified in kg of antimorp equivalent (10-eq) per kg instruction Pophaetti Ba dhido recorda depletire, quattilad in iq of attenuty equivalent Chi-egiper kg estaction. Water use (m) worst deprived; Water-use (m2 world depriced) Characherips the sense their electron despite to an Ay adjusted many of water used The state description according to instruct adjusted must of watter shall Freeheater ecologicity (CTLH) Tust. LCA Reports automatically York offset on manife Westmann spectrum Measured in Comparation Tory and her ealth specces. Meanwood in Comparation Toys (16) the acceptions. generated thanks to the Impact Assessment results

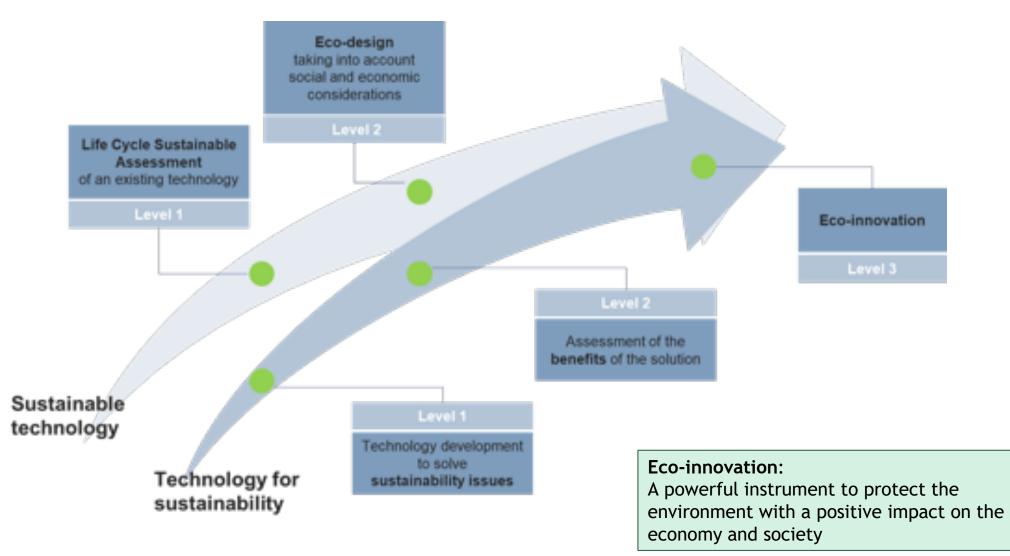
Circularity Rating

- In our pursuit of the most eco-friendly remote control design, we're introducing a novel concept: a weighted circularity rating system. It considers a holistic range of parameters crucial for sustainable design:
 - Environmental impact: Minimizing the lifecycle footprint of the remote control.
 - E-waste reduction: Prioritizing designs that generate less electronic waste.
 - **Performance**: Ensuring the remote control functions effectively and reliably.
 - **Cost**: Balancing affordability with sustainable practices.
 - **User experience**: Creating a remote control that is intuitive and enjoyable to use.

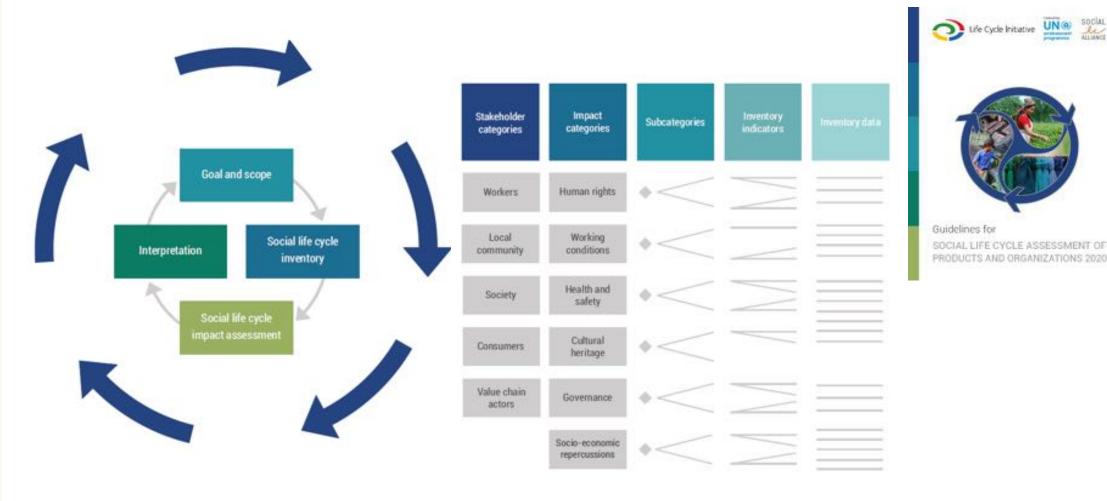
RCU	Circularity Rating	E-Waste Reduction Score (Recycling, Reliability, Reduce)	LCA Score	Performance Score	Cost Score	User Experience
Sustainabil ity Weight		2	2	1,25	1	1,25
Benchmark RCU	С	В	С	В	A	В
ECO DESIGNED GEN 1 RCU	В	В	В	В	В	В
ECO DESIGNED GEN 2 RCU	A	A	A	В	В	A



Global vision: The paths towards eco-innovation


Technology and sustainability: A maze of concepts

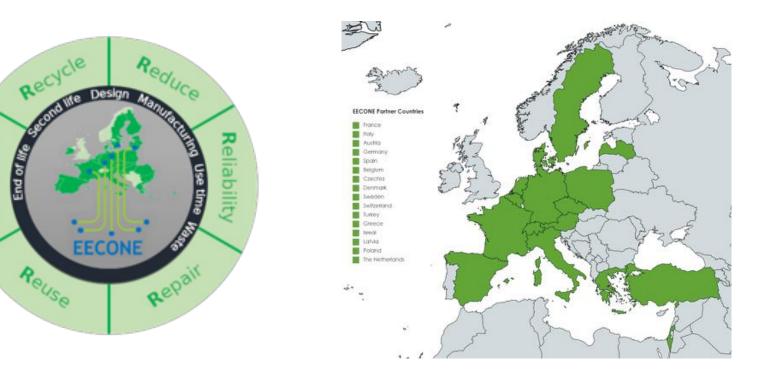
- ▶ Wide and wild use of various terms to link technology and sustainability
- ► Risk of collapse of the concepts


Two paths towards eco-innovation

... without neglecting social impacts

S-LCA: A framework to better understand and address social impacts

ISO 14075


ISO

SOCIAL

Refurbish

The EECONE project receives grants from the EU Horizon Europe research and innovation program, KDT Joint Undertaking, and National Funding Authorities from involved countries under grant agreement no. GAP-101112065.

Recycling quiz: https://www.eecone.com/eecone/survey/?id=90

See /