* Matrix Computations: In Seek of Frugality Matthieu Martel
matthieu.martel@univ-perp.fr

GreenDays 2024, Toulouse

Urgent Need of Green Computing!

More than $\mathbf{1 0 \%}$ of the world electric production is used by IT systems
Distribution of power consumption of computer systems in the world:

Frugality mandatory to preserve the Planet:

* For ecologic but also for economic reasons
* Savings must address all aspects of IT: Storage, computing \& networking

The Special Case of Scientific Data

Scientific data:

* Arrays of correlated numbers in IEEE754 floating-point formats
* Rather smooth surfaces corresponding to the result of simulations or observations

Orders of magnitude ${ }^{1}$:

* Panoramic Survey Telescope (Baltimore): >1.6 petabytes
* By around 2035, ITER will produce 2 petabytes of data on a daily basis
* Climate data volumes and projections into 2030 for climate models (histogram)

[^0]
Urgent Need of Compression Techniques for Scientific Data!

Usual compression techniques not efficient for scientific data

* zip (loseless) : compression rate $\approx 2: 1$ for scientific data
* Needs for lossy compression techniques to go beyong the 2:1 ratio
* Expected ratios: > 10:1

High precision not always needed (e.g. visualization)
Compressors are pipelines of transformations
Example: The JPEG Format ${ }^{2}$

[^1]
Existing Tools for Lossy Scientific Data Compression

Two symetric approaches for floating-point number compression:

```
* error = fct(compression rate) zfp
* compression rate = fct(error) sz
```

An example with $\mathrm{zfp} \mathrm{B}^{3}$

* Interval volume renderings of compressed double-precision floating-point data on a $384 \times 384 \times 256$ grid
* At 4 bits/double ($16 \times$ compression) the image is visually indistinguishable from full 64-bit precision

(a) 1 bitidouble

(b) 4 bits/double

(c) 64 bits/double (no compression)

[^2]
Homomorphic Matrix Computations

Scientific data compression techniques such as $z f p$ and $s z$:
Save storage Save networking Increase computing

Principle: To compute directly with compressed matrices, without decompression
Similar to homomorphic encryption ${ }^{4}$

- Saves storage

O Saves networking

Advantages:

* Avoids to compress/uncompress matrices before using them in computations
* Reduces elementary operations needed to perform the matrix operations

[^3]
The blaz Compressor ${ }^{5}$

* A matrix compressor: lossy, fixed rate (11.37:1), block based
* Allows basic linear algebra among compressed matrices
blaz general workflow:

Currently supported operations:

* Without uncompression: addition, subtraction, multiplication by constant
* With partial uncompression: dot product, multiplication

[^4]
Normalization

Normalize:

1) Values replaced by differences between consecutive elements
2) Resulting values divided by mean slope between consecutive values

$$
\begin{gathered}
\Delta_{\mathbf{0}, j+\mathbf{1}}=M_{\mathbf{0}, j+\mathbf{1}}-M 0, j \\
\Delta_{i+\mathbf{1}, \mathbf{0}}=M_{i+\mathbf{1}, \mathbf{0}}-M i, 0 \\
\Delta_{i+\mathbf{1}, j+\mathbf{1}}=\frac{1}{2}\left(\begin{array}{c}
\left(M_{i+\mathbf{1}, j+\mathbf{1}}-M i, j+1\right) \\
+ \\
\left(M_{i+\mathbf{1}, j+\mathbf{1}}-M i+1, j\right)
\end{array}\right) \\
0 \leq i, j \leq 7
\end{gathered}
$$

Prediction

Predict: Slope between consecutive values given by a ratio (8 bits signed integer)

Discrete Cosine Transform

Transform: 2D DCT stores highest coefficients into first lines \& columns

$$
D_{i, j}=\frac{1}{\sqrt{2 N}} C_{i} C_{j} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} M_{x, y} \cos \left[\frac{(2 x+1) i \pi}{2 N}\right] \cos \left[\frac{(2 y+1) j \pi}{2 N}\right]
$$

blaz Matrices: Data Structure

8×8 block B of a compressed matrix encoded by:

* f the value of B_{00} (binary64)
* s the mean slope s of B (binary64)
* φ the scale factor to normalize the result of the DCT (8-bits integer)
* C array of 28 -bits values containing the coefficients quantized after the DCT

Addition of Two Blocks

$$
\mathrm{B}=\mathrm{B}_{1}+\mathrm{B}_{2}
$$

* First elements: $f=f_{1}+f_{2}$
* Mean slope: $s=s_{1}+s_{2}$
* Scale factor: We want $\varphi=\frac{127}{m}$ with $m=m_{1}+m_{2}$ (m max slope). Then

$$
\varphi=\frac{127}{m_{1}+m_{2}}=\frac{127}{\frac{127}{\varphi_{1}}+\frac{127}{\varphi_{2}}}=\frac{1}{\frac{1}{\varphi_{1}}+\frac{1}{\varphi_{2}}}=\frac{\varphi_{1} \varphi_{2}}{\varphi_{1}+\varphi_{2}}
$$

* Discrete Cosine Transform, for two matrices M_{1} and M_{2} :

$$
D C T\left(M_{1}+M_{2}\right)=D C T\left(M_{1}\right)+D C T\left(M_{2}\right)
$$

The blaz Library: https://github.com/mmartel66/blaz

```
typeder struct {
    int width, height:
    double *block_first_elts, *block_mean_slope;
    s_8 'compressed_values;
} Blaz Compressed Matrix;
Blaz_Compressed_Matrix *blaz_compress(Blaz_Matrix*);
Blaz_Matrix* blaz uncompress(Blaz_Compressed Matrix*);
double blaz_get_matrix_elt(Blaz_Matrix*, int, int);
void blaz set matrix elt(Blaz Matrix*, double, int, int);
double blaz_get_compressed_natrix_elt(Blaz_Conpressed_Matrix*, int, int);
void blaz_set compressed_matrix_elt(Blaz_Compressed Matrix*, double, int, int);
Blaz_Matrix "blaz_add(Blaz_Matrix", Blaz_Matrix");
Blaz_Compressed Matrix *blaz_add_compressed(Blaz_Compressed_Matrix*, Blaz_Compressed_Matrix*);
Blaz_Matrix "blaz_sub(Blaz_Matrix*, Blaz_Matrix");
Blaz_Compressed_Matrix *blaz_sub_compressed(Blaz_Compressed_Matrix*, Blaz_Compressed_Matrix*);
Blaz_Matrix *blaz_mul_cst(Blaz_Matrix*, double);
Blaz Compressed Matrix *blaz mul cst compressed(Blaz_Compressed_Matrix*, double);
double blaz_dot_product(Blaz_Matrix*, Blaz_Matrix*, int, int);
double blaz_dot product_compressed(Blaz_Compressed Natrix*, Blaz_Compressed_Matrix*, int, int);
```


Time Measurements: Blaz vs zfp

* Time measurement of operations in function of the size of the matrices
* Time given in logarithmic scale
* Left: Addition. Right: Multiplication by a constant

Accuracy Measurements: Test Functions

$f_{1}(x, y)=x \times y$

$f_{4}(x, y)=x^{2} \times y^{2}$

$f_{2}(x, y)=\frac{x y}{1+x^{2}+y^{2}}$

$f_{5}(x, y)=\cos \left(\sqrt{x^{2}+y^{2}}\right)$

$$
f_{3}(x, y)=x^{2}-y
$$

$f_{6}(x, y)=\cos \left(x^{2}+y^{2}\right) \cdot e^{-0.1 \cdot\left(x^{2}+y^{2}\right)}$

Accuracy Measurements (mean relative errors)

$\begin{array}{llllll}M_{1} & M_{2} & M_{3} & M_{4} & M_{5} & M_{6}\end{array}$

Compression/Decompression

blaz	0.43%	0.39%	0.53%	0.44%	1.95%	1.17%
zfp	0.0006%	0.0009%	0.02%	0.002%	0.13%	0.15%

Additions (blaz \& zf p)

M_{1}	-	0.98%	0.67%	0.91%	0.72%	0.78%
M_{2}	0.001%	-	0.62%	1.07%	1.76%	1.61%
M_{3}	0.82%	0.12%	-	2.27%	0.71%	0.65%
M_{4}	0.03%	0.42%	0.27%	-	1.68%	1.70%
M_{5}	0.68%	1.62%	1.25%	0.89%	-	0.94%
M_{6}	0.31%	1.27%	0.25%	2.32%	0.16%	-

Case Study: Climate Simulation Data

[^5]
Conclusion \& Perspectives

Conclusion

* It is possible to compute among compressed matrices
* Related work: Precision tuning (programs: POP, neural networks)

Perspectives

* Extend blaz to more linear algebra operators (stencils, reductions, ...)
* Experiment on real-world applications
* Introduce various compression rates (add interpolation, change quantization)
* Develop a parallel (MPI/GPU) version of blaz (block splitting $\Rightarrow / /$ scalability)

References

* M. Martel, Compressed Matrix Computations, IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, BDCAT 2022
* T. Agarwal, H. Dam, P. Sadayappan, G. Gopalakrishnan, D. Ben Khalifa, M. Martel, What Operations can be Performed Directly on Compressed Arrays, and with What Error? 9th International Workshop on Data Analysis and Reduction for Big Scientific Data, ACM Press, 2023, (Best Paper Award)
* D. Ben Khalifa and M. Martel, Compile-Time Optimization of the Energy Consumption of Numerical Computations, Compiler Frontiers Workshop, ACM Press, 2024

[^0]: ${ }^{1}$ wikipedia

[^1]: ${ }^{2}$ A. Hussain, A. Al-Fayadh, N. Radi, Image compression techniques: A survey in lossless and lossy algorithms, Computer Science Neurocomputing, 300:44-69 (2018)

[^2]: ${ }^{3}$ P. Lindstrom, Fixed-Rate Compressed Floating-Point Arrays, IEEE Trans. Vis. Comput. Graph. 20(12): 2674-2683 (2014)

[^3]: ${ }^{4} \mathrm{~J}$. Hee Cheon et al, Protecting Privacy through Homomorphic Encryption, Springer, 2021

[^4]: ${ }^{5}$ M. Martel, Compressed Matrix Computations, IEEE/ACM Int. Conf. on Big Data Computing, Applications and Technologies, BDCAT, 2022.

[^5]: ${ }^{6}$ K. Zhao, S. Di, X. Liang, S. Li, D. Tao, J. Bessac, Z. Chen, and F. Cappello, "SDRBench: Scientific Data Reduction Benchmark for Lossy Compressors", International Workshop on Big Data Reduction (IWBDR2020), in conjunction with IEEE Bigdata20.

