A Performance Study of LLM-Generated Code on Leetcode

Coignion Tristan, Quinton Clément, Rouvoy Romain

Green Days 2024 - Toulouse

New Shiny Things

ChatGPT

Examples

4

Capabilities

<u>(!</u>)

Limitations

"Explain quantum computing in simple terms" \rightarrow

"Got any creative ideas for a 10 year old's birthday?" →

"How do I make an HTTP request in Javascript?" →

Remembers what user said earlier in the conversation

Allows user to provide followup corrections

Trained to decline inappropriate requests

May occasionally generate incorrect information

May occasionally produce harmful instructions or biased content

Limited knowledge of world and events after 2021

Send a message...

ChatGPT Mar 23 Version. Free Research Preview. ChatGPT may produce inaccurate information about people, places, or facts

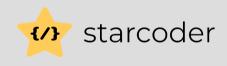
New Shiny Things


```
1 import datetime
3 def parse_expenses(expenses_string):
      """Parse the list of expenses and return the list of triples (date, va
```

GitHub Copilot

Large Language Model (LLM):

An artifical intelligence capable of generating text



Large Language Model (LLM):

An artifical intelligence capable of generating text

Code LLM : LLMs specialized in writing code

Large Language Model (LLM):

An artifical intelligence capable of generating text

Code LLM: LLMs specialized in writing code

Code Assistant : Code LLMs integrated in the IDE

LLM + Green = 💗

LLM + Green = 💔

LLMs need a lot of computing resources

Training StarCoder2-7B

=> 100,000kWh

=> 30,000kgCO2eq

LLM + Green = 💔

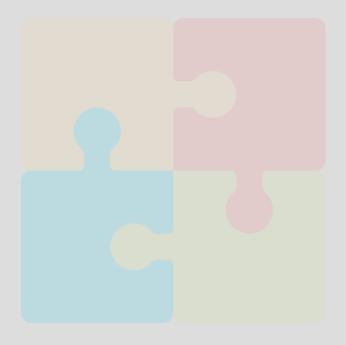
LLMs need a lot of computing resources

Training StarCoder2-7B

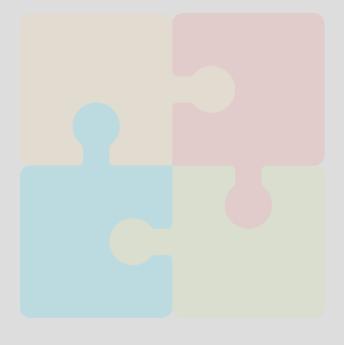
=> 100,000kWh

=> 30,000kgCO2eq

Is it really worth the cost?


Is it worth it?

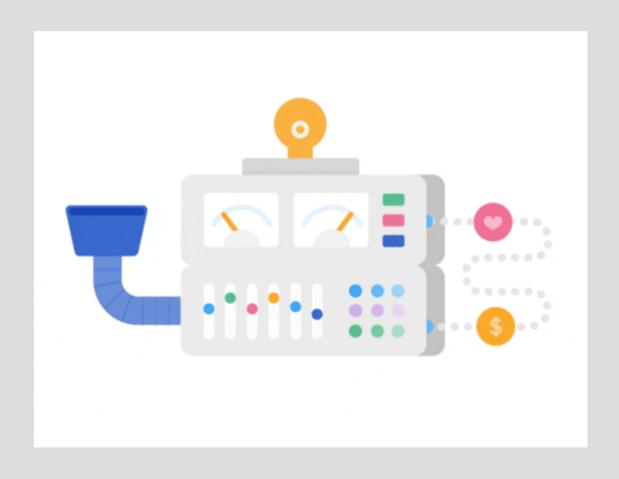
- Measure the impact of the LLM
- Measure the time gained for the developer
- Measure the energy saved on the software


Is it worth it?

- Measure the impact of the LLM
- Measure the time gained for the developer
- Measure the energy saved on the software

How fast is the code generated by LLMs?

A competitive programming platform hosting algorithmic problems


A competitive programming platform hosting algorithmic problems

- + Practical for performance testing
 - + Practical for evaluating LLMs

LLMs under study

LLM Model	Model family	Size	RQ1
GitHub Copilot	Codex	11	✓
CodeGen-Mono 6B	CodeGen	6	✓
CodeGen-Mono 2B	CodeGen	2	✓
CodeGen-Mono 350M	CodeGen	0.35	✓
CodeGen2.5-7B-mono	CodeGen2.5	7	
CodeGen2.5-7B-instruct	CodeGen2.5	7	
CodeLlama-7B-instruct	CodeLlama	7	
CodeLlama-7B	CodeLlama	7	
CodeLlama-7B-python CodeLlama-13B-instruct	CodeLlama	7	
CodeLlama-13B-instruct	CodeLlama	13	
CodeLlama-13B-python	CodeLlama	13	
replit-code-v1-3b	replit-code	3	
WizardCoder-pythin	WizardCoder	7	
SantaCoder	Santacoder	1.1	✓
StarCoder	StarCoder	15.5	
InCoder 6B	Incoder	6	✓
InCoder 1B	Incoder	1	✓
CodeParrot	Codeparrot	1.5	✓

Results

LLMs success rate on:

LLMs success rate on:

• old problems : **37%** of valid solutions

LLMs success rate on:

- old problems : **37%** of valid solutions
- new problems (published after training): 3% of valid solutions

LLMs success rate on:

- old problems : **37%** of valid solutions
- new problems (published after training): 3% of valid solutions

Why are the LLMs 10x worse on newer questions?

LLMs success rate on:

- old problems : 37% of valid solutions
- new problems (after January 2023): 3% of valid solutions

Why are they 10x worse on newer questions?

Data contamination

LLMs success rate on:

- old problems : 37% of valid solutions
- new problems (after January 2023): 3% of valid solutions

Why are they 10x worse on newer questions?

Data contamination

- => Harder to reproduce and generalize research=> Questions the previous research
 - => Questions the previous research done using Leetcode

Leetcode provides useful measures : run time

memory usage

ranking (based on run time)

Leetcode provides useful measures:

run time

memory usage

ranking (based on run time)

BUT

Leetcode provides useful measures like:

run time

memory usage

ranking (based on run time)

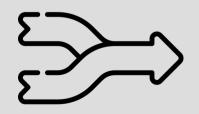
BUT

Very **high variance** (inability to differentiate solutions of different time complexities)
Ranking evolves over time, thus is **unreliable**

Almost (<5%) no problems where one LLM is consistently better than another.

Almost (<5%) no problems where one LLM is consistently better than another.

Very small differences (Cohen's d < 0.05), thus **negligible**.


Almost (<5%) no problems where one LLM is consistently better than another.

Very small differences (Cohen's d < 0.05), thus **negligible**.

the same kinds of solutions (not necessarily the best ones)

Better LLMs

#

Faster code

RQ3: Is there an effect of the temperature on the code's performance?

RQ3: Is there an effect of the temperature on the code's performance?

Temperature: Parameter controlling the "creativity" of the model

RQ3: Is there an effect of the temperature on the code's performance?

Temperature: Parameter controlling the "creativity" of the model

Higher temperatures => higher variance of the performance of the code

=> Higher temperatures can help in searching for faster solutions.

RQ4: How fast is code generated by LLMs compared to humans?

RQ4: How fast is code generated by LLMs compared to humans?

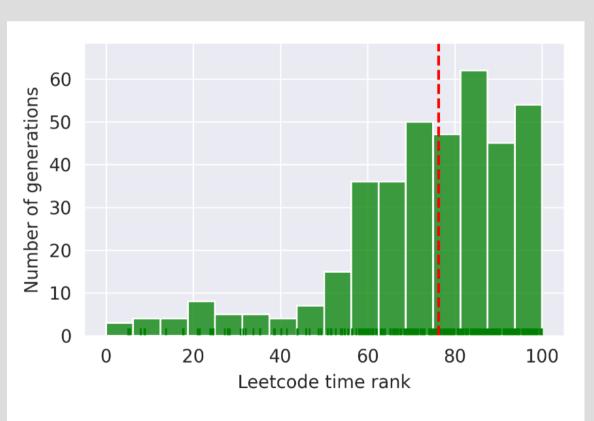


Figure 8: Distribution of the ranking for the CodeGen-6B-mono model

On average, the generated solutions are faster than **73%** of the other submissions on Leetcode

RQ4: How fast is code generated by LLMs compared to humans*?

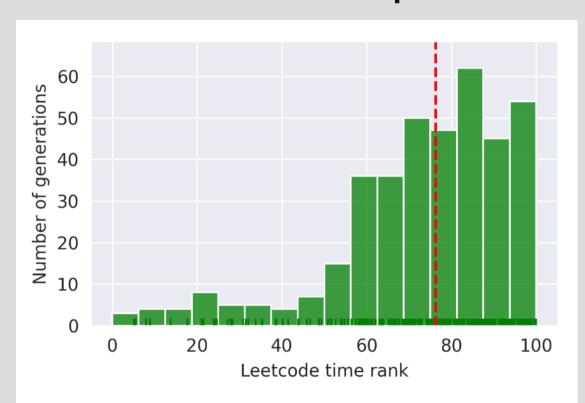


Figure 8: Distribution of the ranking for the CodeGen-6B-mono model

* assuming the other submissions on Leetcode were made by humans On average, the generated solutions are faster than **73%** of the other submissions on Leetcode

Performance of generated code is **largely similar** across different models regardless of their size, training data or architecture

Performance of generated code is **largely similar** across different models regardless of their size, training data or architecture

Increasing the temperature parameter leads to a **greater variance** in performance

Performance of generated code is **largely similar** across different models regardless of their size, training data or architecture

Increasing the temperature parameter leads to a **greater variance** in performance

Leetcode should be used cautiously when evaluating LLMs because of issues of measure stability and **data contamination**

• Extend the study on other kinds of problems

- Extend the study on other kinds of problems
- How to make LLMs produce greener code?

- Extend the study on other kinds of problems
- How to make LLMs produce greener code?
- What is the energy consumption of a code assistant?

Thanks for listening!

Any questions?