Model, Connector
and Deployment

Christian Perez
LIP/INRIA
2010-2011

Content

m Models
m MDE for extending CM
Principle
Genericity
m Connectors
“Classical” connector
“Open” connectiol -
= Deployment
m Conclusion

‘‘‘‘‘

Using

Model Transformation
To extend
Component Models

S
Approaches for the Extension
of Component Models

] p I

- ‘ P €
. Compil MPI

.T* Redist '

|

Compil ‘
‘

" N

Interaction between transformations

2?

T1

Ny v

T2

.'.P_

roposed approach:
Model based transformations

Model to Model
Transformation

A
A1 > A2

M2M T2M, M2T
Jransformatio ransformatio

Meta-modeling
Ecosystem

" JEE
Proposed Approach for
Component Model Extension

Component Model Existing
With finite set of Component
extensions \ / Model
Transformation
Parallel
Parallel | |Components ‘
Component Library Basic
With shared Shared % Components
Memory Memory
Library
7

" JdEE
Extension classification

« Component implementations

Parallel components

Partially solved
Workflow / Dataflow » by Genericity
Skeletons

« Interactions between components
Event & messages

MxN method calls - Connectors
Shared memory

Collective communications

Implementing Generic
Components with
Model Transformation

" S
Motivating Example: A generic farm

ﬁandelbrotFarm<W, I, O, N>

Proposed approach:

A Model-Based Text to Text Transformation

Proposed approach:

GenericCM: [pa| Meta-Mode! forfalam LG, CM:
«Generic B «Non-generic
«Unsupported «Supported

S: D:

GenericCM s CM

source files source files
“]

B<T> B0)
Lo Semanticgliy =]
EEEEE) —=— | equivalent o
Yﬁ* ':
" A

Introducing genericity in a meta-model

Explicit specializations

Instance

« Generic Artifact Port PortType
ComponentType
- Artifact usable as Parameter | [poriTypeParam
PortType
. . PortTypeAr
« Other modifications AR
Default value for parameters ¢
Constraints on parameter ECMEIEnAE =
values
Component

12

F
GenericSCA: SCA Overview

Service: - Reference:
.Java interface Properties .Java interface
<WSDL PortType o% <WSDL PortType

" Binding: Binding:

+Web Service «Web Service
.SCA) .SCA
-Local Code annotations & «Local

XML Based descriptors 13

GenericSCA: Introduced Features

. Concepts made generic :
. Composite component implementations
. Java component implementations
. Java port interfaces

« Concepts that can be parameters
. Component implementations
. Port interfaces
. Data-types
. (Data-values) : properties are already part of SCA

14

" S
GenericSCA:The implementation

o SCA meta-model
Distributed as part of the Eclipse SCA Tool project
About 100 annotated meta-classes
Autogenerated Model — XML dump
« GenericSCA meta-model
SCA meta-model + 18 annotated meta-classes
Autogenerated XML — Model parsing
« GenericSCA to Plain SCA transformation
QVT (OMG): not mature enough yet
Plain java
« ~750 java lines, mostly copy of attributes
« ~100 lines for the main logic
« <<1sec for the Mandelbrot set example

15

Connector-based
Composition

" 00
Notion of connector

m [ntroduced in ADL
Architecture Description Language

m First class entities
List of named roles, with or without cardinality constraints
Roles are fulfilled by components’ ports ports
m Instantiated by connection
m Implemented by generator Component Component
m Example

Connector mpi<role participant>

Connector UP<role user
role provider>

Connector consensus<...>

High Level
Component Model

Hierarchy, Genericity,
Template Meta-Programming &
Connectors

High Level Component Model

m Major concepts
Hierarchical model
Generic model

= Support meta-programming (template a la C++)
Connector based
= Primitive and composite

Currently static

Component Component

m HLCMi: an implementation of HLCM
Model-transformation based

Already implemented connectors

m Use/Provide, Shared Data, Collective Communications,
“MxN” RMI, Irregular Mesh

Connectors

m Without connectors
Direct connection between ports

Limitation to 1-1 connection
Component *c @ Component

m With connectors ‘

Connectors reify connections

= A name

= A set of roles
Any number of roles Component Component
Can be 15t class entities

= Implemented by the user

10

Connector implementations

m Intrinsically generic
Types of roles fulfillment < parameters for the implementation
m 1 connector <> multiple implementations
For distinct placement on hardware resources
m Two possible kinds
Primitive connectors
= Directly supported by the model

Composite connectors
= An assembly

provider
interface = PT

user
interface = UT

when PT subtype of UT and
user.host = provider.host

" S
Example of More Complex Interactions
as Connectors

One single role
Multiple fulfillments

m Shared data between components |

m Parallel method calls

Provides the redistribution
An example @
= 2x2 Matrix multiplication

= 2 roles for users (top/bottom)
= 2 roles for providers (right/left)

11

Notion of Open Connections

m Components expose “open Fulfilled role

connections” Role left “open”
Some roles fulfilled
Some roles left “open”

0 0O®Q i@

merge

m Interactions are defined by
“merging” connections l Results in
Union of the role fulfillments > 0

A single logical connection

" JE
Expressing Parallel Matrix
Multiplication with HLCM

reuse

B B ’

: B
O 3 O @
expos ;
merge @—P—Q QE

J Results in What implementation to
use for this connection?

E——

12

" S
Connection Implementation:
a Planning Choice

Single host R
distribution _ -~

S 0@ (e
Multiple hosts ~~_ == ¢ i
distribution @ 0@, DHD)

" JEE 000
Conclusion

m From « simple » to « complex » composition
operators
m Need of models with open composition support
Component, connector, hierarchy, genericity, etc.
m Need of models/algorithms to derive actual
implementation from an abstract declaration
m Need of models/algorithms to support dynamicity
Adaptability : reaction to environment modifications
« workflow » : reaction to programmed modifications

13

