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Computing needs are ever increasing . . .

.

...... Big computing and data requirements
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Single-owner Computing Resources
.Supercomputer..

......

Computers at the front-line
Large-scale: 100,000 nodes; 1,500,000 cores
Complex network topologies: torus, fat-tree
Heterogeneous computing nodes

I Blue Waters: CPU-only and CPU+GPU nodes
I Curie: Fat, Hybrid, Thin nodes

Top #1 (Titan): 188 M$ + 6 M$/yr

.Clusters..

......

Smaller scale
Commodity hardware
One cluster → nearly homogeneous
Multiple cluster → heterogeneous
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Multi-owner Computing Resources
.Grid Computing..

......

Basically a multi-cluster system
Geographically dispersed
Owned by multiple institutions

.Cloud Computing..

......

Renting computing resource from a provider
Amazon EC2 “supercomputer”:

I $1060/hr for 1, 250 nodes (10, 000 cores)

.Sky Computing..

......
Renting from multiple providers
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Running Applications on Computing Resources

.Selecting Resources..

......

Take into account: heterogenity, centralized / distributed, price
Goal: minimize completion time, cost, energy
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Resource Management

.
Resource Management System (RMS)
..

......

Multiplexes computing nodes among multiple users
Aims at isolating them for security and improved performance
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Current Practice
.
Dynamic allocations (à la Cloud)
..

......

Clouds
“The illusion of infinite computing resources available on demand”

I Infinite? Actually up to 20 nodes
I “Supercomputer” of 5, 674 nodes (50,000 cores)

spanning 7 Amazon EC2 regions1

I Out of capacity errors2

.
Static allocations (à la batch schedulers)..

......

a.k.a. rigid jobs (node-count times duration)
Misses opportunities for improvement (next slide)

1http://blog.cyclecomputing.com/2012/04/cyclecloud-50000-core-utility-supercomputing.html

2http://blog.cyclecomputing.com/2011/03/cyclecloud-4096-core-cluster.html
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Application Properties by Resource Usage

.

......Problem: Insufficiently supported in the state-of-the art.
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Goal of the Thesis
.Improve resource management..

......

Resource utilization
User-chosen criterion:

I Application completion time
I Energy consumption / Cost

.How?..

......

Resource management architectures
Cooperates with applications
Support moldability, malleability, evolution

I without workarounds
I reliably
I efficiently

Focus is on interaction
I Re-use proven scheduling algorithms as much as possible
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Contributions: Resource Management Architectures

centralized distributed

moldable
CooRMv1 1 distCooRM

malleable/evolving
CooRMv2 2,3 GridTLSE & DIET4

1C. Klein, C. Pérez, An RMS Architecture for Efficiently Supporting Moldable Application, HPCC, 2011
2C. Klein, C. Pérez, Towards Scheduling Evolving Applications, CGWS, 2011
3C. Klein, C. Pérez, An RMS for Non-predictably Evolving Applications, Cluster, 2011
4F. Camillo, E. Caron, R. Guivarch, A. Hurault, C. Klein, C. Pérez, Diet-ethic: Fair Scheduling of Optional

Computations in GridRPC Middleware, INRIA RR-7959, 2012
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...1 Introduction

...2 CooRMv1: Moldability
Computational Electromagnetics Application
Architecture Description
RMS/Application-side Scheduling
Evaluation

...3 CooRMv2: Malleability, Evolution
Adaptive Mesh Refinement Application
Architecture Description
RMS/Application-side Scheduling
Evaluation

...4 Conclusions and Perspectives
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Computational Electromagnetics (CEM)
.CEM Application..

......

Part of the ANR DiscoGrid project
Antenna performance, electromagnetic compatibility . . .
Traditionally executed on a single cluster
Huge mesh (number of tetrahedra) → launch on multiple clusters

.

...... Efficient Execution of a Multi-cluster Moldable Applications
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Performance of the CEM Application
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......

Devised a performance model
I cluster computation power
I inter-cluster network metrics (latency, bandwidth)

Devised a custom resource selection algorithm
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Towards Moldability
.

......

No moldability (rigid jobs): fix node-count and duration
I Most batch schedulers

I Workaround: re-implement RMS’s scheduling algorithm
Limited moldability: range of node-counts and a single duration

I 8–16 nodes × 2 hours
I e.g., SLURM

Moldable configurations: list of node-counts × durations
I 8 nodes × 2 hours OR 16 nodes × 1 hour OR . . .
I e.g., OAR, Moab
I Impractical: large number of configurations (next slide)
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Number of Configurations
.

......

For a multi-cluster system:
e.g., number of nodes on each cluster
# configurations is large (exponential)

# clusters: C
# nodes per clusters: N
# configurations: (N+1)C −1

.

......

For a supercomputer:
number of CPU nodes
number of CPU+GPU nodes
network topology
# configurations is large (potentially exponential)

.Problem..

......
What interface should the RMS expose to allow moldable
applications to effectively select resources?
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Rationale
How CooRM Should Work

.

......

Applications should take a more active role in the scheduling

RMS gives application the resource occupation (we call this a view)
I No need to re-implement RMS’s scheduling algorithm

Applications send a resource requests
I Computed using custom resource selection algorithm
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Architecture
.

......

.

......
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RMS-side Scheduling
.Main Responsibilities..

......

Compute views
Compute start-times for requests
Allocate node IDs

.Example Implementation..

......
Based on Conservative Back-Filling (CBF)

.Fair-start Delay and Ghosts..

......
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Application-side Scheduling
CEM Application
.

......

fR : Ri

Input Resources (list of CIDs, nH)

7→ Rs

Selected Resources

, d
execution time

.

......
Linear complexity
< 1ms
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Experimental Setup
.Resource Model..

......

nC clusters, each having 128 hosts
Cluster i is considered 10%, 20%, . . . faster than cluster 1
WAN: 5ms same city, 10ms same country, 50ms otherwise

.Application Model..

......

200 application arriving at 1 app/ second
Mixture of

I rigid, single-cluster moldable
F consecutive jobs from LLNL-Atlas-2006-1.1-cln
F 80% rigid jobs (as in traces)
F 20% single-cluster moldable jobs (using Amdahl’s law)

I multi-cluster moldable applications (CEM)
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Simulation Results
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CooRMv1 Implementation
.

......

2, 300 SLOC of Python code
Prototype implementation using CORBA (omniORBpy)
CPU-time vs. simulation time
TCP payload vs. size of messages

.Simulations vs. Real Experiments..

......
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Adaptive Mesh Refinement Applications (AMR)
.

......

Mesh is dynamically refined / coarsened as
required by numerical precision

I Memory requirements increase / decrease
I Amount of parallelism increases / decreases

Generally evolves non-predictably

.

......
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......End-user’s Goal: maintain a given target efficiency
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Problem and Goal

.Problem..

......

Static allocations → inefficient resource utilisation
Dynamic allocations (à la Cloud) → out of capacity
Malleable jobs (KOALA, ReShape, Faucets . . . )
→ no guarantees ⇒ application may crash
→ difficult to target custom objective

.Goal..

......

An RMS which allows non-predictably evolving applications
To use resources efficiently
Guarantee the availability of resources
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CooRMv2: Additions to CooRMv1

.Overview..

......

Resource requests types
Request relations
Preemptible views
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Resource Requests

.

......

Number of nodes, duration
RMS chooses start time → node IDs are allocated to the application

Type
I Non-preemptible (default in major RMSs, i.e., are not taken away)

I Preemptible (i.e., can be taken away at any time)
I Preallocation

“I do not currently need these resources, but make sure I can get them
immediately if I need them.”
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Request Relations
.Request Relations..

......

Dynamic applications →
multiple requests + temporal constraints

relatedTo an existing request
relatedHow FREE, NEXT, COALLOC

Two methods: request(), done()

.High-level Operations..

......
An update is guaranteed to succeed only inside a pre-allocation
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Views

.Views..

......

Apps need to adapt their requests to the availability of the resources
Preemptible view informs when resources need to be preempted
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Example Interaction
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CooRMv2 RMS Implementation

.Overview..

......

Compute views
Compute start times for each requests
Start requests and allocate resources

.Main Idea of the Scheduling Algorithm..

......

Pre-allocations and non-preemptible requests
I Conservative Back-Filling (CBF)

Preemptible requests
I Equi-partitioning
I Allow unused partitions to be filled by other applications
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Non-predictably Evolving: Adaptive Mesh Refinement

.Application Model..

......

Application knows its speed-up model
Cannot predict its data evolution
Aim: maintain a given target efficiency

.Behaviour in CooRMv2..

......

Sends one pre-allocation
I Simulation parameter: overcommitFactor

Sends non-preemptible requests inside the pre-allocation
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Malleable: Parameter-Sweep Application

.Application Model..

......

Infinite number of single-node tasks
All tasks have the same duration (known in advance)
Aim: maximize throughput

.Behaviour in CooRMv2..

......

Send preemptible requests
Spawn tasks if resources are available
Kill tasks if RMS asks to (increases waste)
Wait for task completion, if informed in due time (no waste)
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Scheduling with Spontaneous Updates
.Experimental Setup..

......

Apps: 1xAMR (target eff. = 75%), 1xPSA (task duration = 600 s)
Resources: number of nodes just enough to fit the AMR
AMR uses fixed / dynamic allocations

.

......
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Scheduling with Announced Updates
.Experimental Setup..

......

Apps: 1xAMR (target eff. = 75%), 1xPSA (task duration = 600 s)
Resources: number of nodes just enough to fit the AMR
AMR uses announced updates (announce interval)

.

......
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Announced Updates: Nice Resource “Filling”
.Experimental Setup..

......

1xAMR application
PSA1: task duration = 600 s

PSA2: task duration = 60 s

.

......
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Conclusions
.Goal: Improve resource management..

......

Proposing resource management architectures
Promote collaboration with applications

centralized distributed

moldable
CooRMv1 distCooRM

malleable/evolving
CooRMv2 GridTLSE & DIET
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CooRMv1 (1/2)

.

......

Resource Management Architecture
Efficiently support moldable applications
Number of configurations is significantly reduced (103 vs. 1017)
New cases become practical
Validated through simulation and prototype implementation
Studied time needed for applications to adapt
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CooRMv1 (2/2)

.Integration with CooRMv1..

......

Implemented by N. Toukourou, Engineer, INRIA
Results: Easier to launch computation schemas on computing
resources

.Custom Scheduling Algorithm for High-Level Waste Simulator..

......

Co-advised V. Lanore, ex M2 Student, ENS de Lyon
Scheduling multi-level applications
Results: Response-time improved
(accepted ComPAS’13)
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CooRMv2

.

......

Extension of CooRMv1
Efficiently deal with evolving/malleable applications
Effective resource usage improved up to 3.6 times
Validated through simulations
Prototype implementation is available
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Other Contributions

.distCooRM..

......

Collaboration with Y. Radenac, Myriads, INRIA
Distributed version of CooRMv1
Results: Shows good scalability (for a limited number of applications)

.Optional Computation Support..

......

Collaboration with F. Camillo, R. Guivarch, A. Hurault, IRIT
Grid-TLSE+DIET Use-case: Multiple Threshold Pivoting
Architecture for efficiently dealing with optional computation
Results: Improves user satisfaction and fairness (submitted CCGrid’13)
Transfer: DIET patches submitted upstream
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Perspectives
.Short-term..

......

Integrate CooRMv1/v2 in existing batch schedulers
I OAR, SLURM

Validation with other applications
I Cost, energy

.Long-term..

......

Topology inside a supercomputer/cluster
I Allow pre-launch topology optimization

Economic model (à la Cloud)
I Charge for pre-allocation?
I Bonus for timely updates?

distCooRM
I Improve scalability (add a pre-selection phase)
I Add malleable / evolving support
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Backup Slides
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NIST Cloud Definition
.

......

Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort or
service provider interaction.

.

......

Essential characteristics
I on-demand self-service
I broad network access
I resource pooling
I rapid elasticity
I measured service

Service models: SaaS, PaaS, IaaS
Deployment models: private, community, public, hybrid
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SLA@SOI Definition

.

......

Machine-readable contract between a customer and a provider
Guarantee that what you ask for, you get
Allow you to verify provisioning
Notify violations and define appropriate automated actions/penalties
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Fairness
.Simulation Setup..

......

Fair-start Delay: 5 seconds
1 x complex-moldable applications (CEM)

I Simulated applications with lengthy resource selection
I Added adaptation delay
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AMR Evolution
.AMR Examples..

......

.AMR Model..

......
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Executing AMR applications on HPC resources
.
Use static allocations (rigid jobs)
..

......

E.g., cluster, supercomputing batch schedulers
Evolution is not known in advance
→ User is forced to over-allocate
→ Inefficient resource usage
Example: target efficiency 75% (±10%)
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Ideally, unused resources should be filled by other applications
I Needs support from the Resource Management System (RMS)
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