
PadicoTM: An Open Integration Framework for

Communication Middleware and Runtimes ⋆

Alexandre Denis a Christian Pérez b Thierry Priol b

aIRISA/IFSIC
bIRISA/INRIA

Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract

Computational grids are seen as the future emergent computing infrastructures.
Their programming requires the use of several paradigms that are implemented
through communication middleware and runtimes. However some of these middle-
ware systems and runtimes are unable to take benefit of specific networking technolo-
gies available in grid infrastructures. In this paper, we describe an open integration
framework that allows several communication middleware and runtimes to efficiently
share the networking resources. Such framework encourages grid programmers to use
the most suited communication paradigms for their applications independently from
the underlying networks. Therefore, there is no obstacle to deploy the applications
on a specific grid configuration.

Key words: Communication framework, middleware integration, code coupling,
high performance network

1 Introduction

As parallel and distributed systems are merging into a single computational
infrastructure called the Grid, it is foreseen that the programming of such
an infrastructure will require the use of several communication paradigms in
a combined and coherent way. Indeed, the availability of grid infrastructures

⋆ Supported by the Incentive Concerted Action “GRID” (ACI GRID) of the French
Ministry of Research.

Email addresses: Alexandre.Denis@irisa.fr (Alexandre Denis),
Christian.Perez@irisa.fr (Christian Pérez), Thierry.Priol@irisa.fr (Thierry
Priol).

Preprint submitted to Elsevier Science 10 December 2008



will encourage the development of new applications in the field of scientific
computing that was unthinkable some years ago. With the availability of such
an amount of computing power, it is now envisaged to simulate more com-
plex physical phenomena. For instance, the simulation of all physical phe-
nomena that are involved in the design of an aircraft requires the coupling
of a large number of simulation codes, in the fields of structural mechanics,
computational fluid dynamics, electromagnetism, etc. Each code has its own
requirement in term of computing resources (visualization, parallel or vector
computers). The codes that compose such an application are generally inde-
pendently developed. It appears very constraining to require that all codes are
based on the same communication paradigm, like for example MPI, to be able
to run on a computational grid. It is more likely that each simulation code
has its own requirement in term of execution support. Some of them are based
on message-passing, some others require a shared memory abstraction (either
a physical memory or a distributed shared memory). Moreover, the coupling
of simulation codes requires the use of specific communication paradigms to
transfer both data and control, such as RPC (Remote Procedure Call) or RMI
(Remote Method Invocation). CORBA or Java RMI are good candidates to
support the coupling of codes. However, there exists several obstacles that
discourage programmers from using the available communication paradigms
in their applications. Thus, they are forced to choose one against the others
even if it is not the most suitable one.

The first obstacle is that most implementations of the communication paradigms
for distributed systems (RPC or RMI) are unable to exploit all the networks
available in a grid system, such as those in parallel computers or PC clus-
ters. Existing implementations of such communication paradigms were mainly
based on the widely used TCP/IP communication protocol. Implementing
TCP/IP on various communication networks could be a solution to solve the
problem, but suffers from huge software overhead discouraging the program-
mers from using distributed programming paradigms within high-performance
applications. In such circumstances, the use of RPC or RMI will restrict the
deployment of the application on some of the computing resources depending
on the availability of networks.

The second obstacle is the design of low-level communication layers for Sys-
tem Area Networks (SAN) in parallel systems or PC clusters (Myrinet, SCI,
...) in a grid system. Such communication layers were not designed to be
able to share the resources with several communication middleware and run-
times. Usually, these networks are available through a single communication
paradigm (message passing most of the time). Even worse, some communica-
tion layers require that the same binary code has to be executed on each node
of the parallel computing resource. With such a restriction, it is not possible
to execute two different codes on the same parallel system nor to exploit the
underlying high-performance network to let the two codes exchange control

2



and data.

Thus there exists a high risk of encouraging the programmers to use a single
communication middleware or runtime for both parallel (within a simulation
code) and distributed (between simulation codes) programming. For that pur-
pose, one can envisage the use of an MPI [8] implementation for a grid in-
frastructure. We think that this approach is not suitable for several reasons.
First of all, message-based runtimes (eg. MPI) were not designed to transfer
the control; it forces thus the programmer to simulate a RPC on top of the
message-passing runtime. Moreover, there is no way to express the interface
of a scientific code. The use of such a code in another application will not be
as simple as with a middleware that provides a way to express the interface
associated with a code (such as the IDL language of CORBA). Our project
aims at removing the two previously mentioned obstacles to allow the pro-
grammers to choose the most suitable middleware and runtimes for the design
of grid applications.

The remainder of this paper is divided as follows. Section 2 gives a short
description of communication middleware and runtimes that should be inte-
grated into our open integration platform. In section 3, we sketch the architec-
ture of the PadicoTM platform. Section 4 gives some performance results that
were obtained with the PadicoTM platform. Section 5 presents some related
works. Finally, we present some concluding remarks in section 6.

2 Communication Middleware and Runtimes

This section aims at giving a brief overview of several communication middle-
ware systems and runtimes we would like to integrate into an open framework,
and draws a list of problems that such an open framework has to solve.

2.1 Message Passing

Message-passing has been widely adopted as the communication paradigm in
the programming of distributed memory parallel systems. Although in the
past there were various message-passing based runtimes provided by the par-
allel systems vendors, several projects aimed at designing a common message-
passing interface. PVM [20] and MPI [7] are examples of such projects. Such
runtimes allow the sending and receiving of messages through explicit send

and receive operations with various semantics (blocking or non-blocking). Mes-
sages are usually associated with a type to allow a selection at the receiving
side. Nowadays most of the parallel programs designed for distributed mem-

3



ory parallel systems are based on MPI. However, MPI was mainly designed
for parallel programming and not for distributed programming.

2.2 Distributed Shared Memory

Distributed shared memory systems [13, 11] are seen as an alternative for the
programming of distributed and/or parallel systems. It gives the illusion of a
single address space in a computational infrastructure in which each node has
its own local physical memory. Although this paradigm has had few success,
we think that the availability of a single address space in a grid infrastruc-
ture could simplify the programming of irregular applications for which data
distribution is extremely challenging, or even impossible. Current DSM im-
plementations are built on existing or specific message passing libraries.

2.3 Distributed Objects and Components

CORBA [15] is a specification from the OMG (Object Management Group)
to support distributed object-oriented applications. An application based on
CORBA can be seen as a collection of independent software components or
CORBA objects. Remote method invocations are handled by an Object Re-
quest Broker (ORB) which provides a communication infrastructure indepen-
dent of the underlying network. An object interface is specified with the Inter-
face Definition Language (IDL). An IDL compiler is in charge of generating
a stub for the client side and a skeleton at the server side. Stubs and skele-
tons aim at connecting a client of a particular object to its implementation
through the ORB. Within the ORB, several protocols exist to handle specific
network technologies. The most important protocol is IIOP (Internet Inter-
ORB Protocol) which is used to support IP-based networks. However, IIOP
was designed for interoperability and offers limited performance. Fortunately,
CORBA provides the ability to write an ESIOP (Environment-Specific Inter-
ORB Protocol) which can handle other network technologies. However, there
are very few ESIOP implementations for specific network technologies such
as those in PC clusters or parallel computers. Moreover, the problem is more
complex as we may think. A high performance CORBA implementation will
typically utilize SAN with a dedicated high-performance protocol. It needs to
be interoperable with other standard ORBs, and thus should implement both
high-speed protocol for SAN and standard IIOP for interconnecting with other
ORBs over TCP/IP. From the application designer perspective, such a high-
speed ORB must behave as any other ORB.

4



SCI threadsMyrinet TCP

PadicoTM

CORBA MPI

Application
(process view)

Fig. 1. Example of a typical PadicoTM application which uses both MPI and
CORBA

2.4 Supporting several Communication Middleware and Runtimes

Supporting CORBA and MPI, both running simultaneously, is not straight-
forward. Several access conflicts for networking resources may arise. For ex-
ample, only one application at a time can use Myrinet through BIP [17]. If
both CORBA and MPI try to use it without being aware of each other, there
are access conflicts and reentrance issues. If each middleware (eg. CORBA,
MPI, a DSM, etc.) has its own thread dedicated to communications, with its
own policy, communication performance is likely to be sub-optimal. If ever we
are lucky enough and there is no resource conflict, there is probably a more
efficient way than putting side by side pieces of software that do not see each
other and that act in an “egoistic” fashion. In a more general manner, resource
access should be cooperative rather than competitive.

3 PadicoTM Architecture

Padico is our research platform to investigate the problems of integrating sev-
eral communication middleware and runtimes. PadicoTM, standing for Padico
Task Manager, is the runtime of Padico. The role of PadicoTM is to provide
a high performance infrastructure to plug in middleware like CORBA, MPI,
JVM (Java Virtual Machine), DSM (Distributed Shared Memory), etc. It of-
fers a framework that deals with communication and multi-threading issues,
allowing different middlewares to efficiently cohabit within the same process.
Its strength is to offer the same interface to very different networks. Such plat-
form is being used as a runtime for code coupling applications based on the
concept of parallel CORBA objects [18, 6], that need to simultaneously use
a middleware (CORBA) and a runtime (MPI). Figure 1 shows a typical use
of PadicoTM: an application uses MPI and CORBA at the same time. The
following sections focus on the description of PadicoTM.

5



3.1 PadicoTM Overview

The design of PadicoTM, derived from the software component technology, is
very modular. Every module is represented as a component: a description file
is attached to the binary files. PadicoTM is composed of core modules and
service modules. PadicoTM core implements module management, network
multiplexing and thread management. PadicoTM core comprises three mod-
ules: Puk , TaskManager and NetAccess. Services are plugged in PadicoTM
core. The available services are:

• advanced network API (VSock described in Section 3.5 and Circuit de-
scribed in Section 3.6) on top of native PadicoTM network API;

• middleware and runtimes, namely CORBA, MPI, and a Java Virtual Ma-
chine (Section 4);

• gatekeepers (Section 3.7) which enable the user to remotely steer the pro-
cesses on every nodes.

3.2 Dynamicity

There is a network model discrepancy between the “distributed world” (eg. CORBA)
and the “parallel world” (eg. MPI). Communication layers dedicated to par-
allelism typically use a static topology 1 : nodes cannot be inserted or re-
moved into the communicator while a session is active. On the other hand,
CORBA has a distributed approach: servers may be dynamically started,
clients may dynamically contact servers. The network topology is dynamic.
High-performance networks API are mostly biased toward the parallel model;
thus, it is challenging to map the distributed communication model of CORBA
onto SAN such as Myrinet or SCI.

Since most communication libraries for SAN (eg. BIP, Madeleine [17] or ven-
dor’s MPI on most machines) require the processes on all nodes to be started
at the same time, we chose that PadicoTM bootstraps a unique binary on
each node. It satisfies the SPMD requirement of the communication library.
Since we do not want all nodes to actually run the same application, we chose
to store applications into dynamically loadable modules. Thanks to this mech-
anism, different binaries can be dynamically loaded into the different nodes of
a cluster or a parallel computer that participates to a grid system. For exam-
ple, we can load a CORBA server on one node and CORBA clients on other
nodes. In PadicoTM, we call this bootstrap binary Padico µ-Kernel, or in
shorter Puk . Once the Puk module is bootstrapped on each node, it loads the

1 PVM and MPI2 address this problem but do not allow network management on
a link-per-link basis.

6



<mod name="ORB" driver="binary">

<requires>VSock</requires>

<attr label="NameService">

corbaloc:iiop:paraski.irisa.fr:2809/NameService

</attr>

<unit>libORB.so</unit>

</mod>

Fig. 2. XML description for the ORB service.

other modules and starts them. Puk is able to do only three things: load, start
and unload modules on the node it manages. It knows nothing about threads
nor about the network – these tasks are delegated to the TaskManager and
NetAccess modules described below.

We want the module concept to be open. We do not restrict ourselves to
binary dynamically loadable libraries. Actually, modules are described in a
file written in XML. This description file contains the name of a driver able
to load this module, references to other modules for dependency checking,
units and attributes. A driver is a set of functions which tell Puk how to
load, start and unload a given type of unit. Different drivers may be seen as
module types. For example, the binary driver defines units as binary shared
objects (“.so” libraries on Unix), the java driver defines units as Java classes,
or the pkg driver defines units as being modules. Attributes are environment
variables aimed at configuring modules. Figure 2 is the description for the
ORB module: it should be loaded by the binary driver, requires the VSock
module, contains the libORB.so unit and an attribute for referencing the
CORBA name service.

3.3 Coherent Thread Management

It is now common that middleware implementations use multi-threading. How-
ever, middleware systems which are not designed to run together in the same
process are likely to use incompatible thread policies, or simply different multi-
threading packages. An application runs into trouble when mixing several
kinds of threads. That is why PadicoTM must provide the plugged-in middle-
ware with a portability layer for multi-threading.

At first look, it may seem attractive to use Posix threads (known as pthread)
as a foundation. However, it has been shown [4] that MPI and current imple-
mentations of Posix threads do not stack up nicely. To deal with portability
as well as performance issues, we choose the Marcel [5] multi-threading li-
brary. Marcel is a multi-threading library in user space. It implements an
N:M thread scheduling on SMP architectures. Marcel has been designed to

7



guarantee a good reactivity of the application to network I/O when used in
conjunction with the Madeleine [3] communication layer.

The TaskManager module of PadicoTM is based on Marcel. Every PadicoTM
modules which use multi-threading are supposed to use Marcel and no other
multi-threading library. This is not very constraining: Marcel API is very
similar to Posix threads API.

The TaskManager module provides handy queues for asynchronous processing
of Puk operations. All Puk operations are performed in the same thread to
avoid reentrance issues at low level. The modules outside the PadicoTM core
are not supposed to perform direct calls to Puk ; they should use it through the
TaskManager API instead. The TaskManager module manages system calls
so that they do not block the whole process. It provides hooks for polling loops
so that they do not compete with each other. As the TaskManager knows the
threads of every modules, it is able to chose a coherent policy.

3.4 Cooperative Access to the Network

Access to high speed networks is the more conflict-prone task when using mul-
tiple middleware systems at the same time. Some access methods require an
exclusive access to the hardware (eg. Myrinet through BIP) thus only one
library can use it at the same time – ie. CORBA or MPI, not both; some net-
works have limited resources which can be exhausted if different libraries open
separate connections (eg. SCI); on some network hardware, several drivers are
available but only one is usable at a time (eg. BIP or GM on Myrinet).

In the worst case, middleware cannot coexist in the same process nor on the
same machine, due to network access conflict. In the best case, if middleware
systems do not know each other, each would run its own polling thread so
that the access to the network is competitive and prone to race conditions.

To deal with low level, portability, and performance issues, we chose to use
Madeleine [3] as a foundation for the NetAccess module of PadicoTM. The
Madeleine communication layer was designed to bridge the gap between low-
level communication interfaces (such as BIP [17], SBP or UNET) and middle-
ware. It provides an interface optimized for RPC-like operations that allows
zero-copy data transmissions on high-speed networks, and is best used with
Marcel threads. A unique polling loop managed by the PadicoTM NetAccess
module dispatches incoming messages to modules that want access to high-
speed networks. Thus, every module use the network through NetAccess: there
is no access conflict. Moreover, there is no competition thanks to the unique
polling loop.

8



In order to allow several middleware to use the network, there is a need for
multiplexing in some layer. Madeleine provides no more multiplexing channels
than what is allowed by the hardware; it means two channels on Myrinet, and
only one channel on SCI. However, to deploy an arbitrary number of commu-
nication middlewares in a PadicoTM process, we need an unbound number
of logical communication channels. The NetAccess module multiplexes logi-
cal “PadicoTM channels” on top of Madeleine hardware channels. Practically,
NetAccess uses one Madeleine channel with one polling loop listening on it.
The modules that want to use Madeleine register callback functions which
are called when a message arrives. To guarantee that the communications are
deadlock-free, callbacks are not allowed to block nor to send directly a message
on the network. However, if they need to send a reply or to wait on a condition,
the TaskManager can do it in another thread. This mechanism requires very
few changes to existing Madeleine applications. Moreover, user’s applications
do not want to use Madeleine directly; they use CORBA or MPI instead. Only
developers of middleware for PadicoTM need to use these callbacks.

Multiplexing on top of Madeleine adds a header to all messages. This can
increase significantly the latency if not done properly. We implement “headers
combining” which enables most messages to contain only one combined header
plus the body. Headers of all logical layers are aggregated into a single low-level
packet. For each outgoing message, NetAccess allocates a buffer for headers; on
top of NetAccess, each layer adds its headers in the buffer. Thus, multiplexing
on top of Madeleine adds virtually no overhead compared to middleware built
on top of regular Madeleine. We measured that the overhead is negligible.

Puk , TaskManager and NetAccess modules compose PadicoTM core. Other
modules are called services. They are plugged in the PadicoTM core. Figure 3
sums up the available modules in PadicoTM.

3.5 Virtual Sockets

The TCP/IP network protocol is designed for use over a WAN. It is not well
suited for use over a SAN. Moreover, system calls add a significant latency
to the data path. That is why we avoid as much as possible kernel-level com-
munication libraries. However, the widespread socket interface from Berkeley
is fairly well suited for networking. Most networking middleware use sock-
ets; some of them heavily rely on the concept of sockets and would require
very deep changes to use another communication paradigm. Thus, we chose
to implement a socket-like interface on top of the native NetAccess interface,
like Fast Socket [19] on top of Active Messages. Our approach relies on the
concept of virtual socket, that we call VSock . It implements a subset of the
standard socket functions in user space on top of NetAccess, for achieving

9



Marcel
Madeleine

Myrinet SCI
TCP

VSock

NetAccess

multiplexed Madeleine interface

standard Madeleine interface TaskManager

JVM

Application

CORBA

Circuit

MPI DSM
Circuit interface

VSock interface

PadicoTM core

Fig. 3. PadicoTM modules

high-performance. It performs zero-copy datagram transfer with a socket-like
connection handshake mechanism.

VSock is a multi-protocol communication layer with auto-selection. It auto-
matically selects the adequate protocol according to the available hardware.
For interoperability issues, VSock is able to communicate with VSock -unaware
applications using standard TCP/IP protocol. It determines by itself whether
an address (a pair of standard IP address–port number) is reachable using
Madeleine or if it should revert to standard TCP. From the application point
of view, VSock behaves exactly as regular sockets, even if the data path is
bypassed through NetAccess/Madeleine instead of TCP/IP when possible.

Then, it is straightforward to port on top of VSock existing middleware based
on sockets like CORBA or a Java Virtual Machine.

3.6 Groups and circuits

The NetAccess module is a low-level communication layer of PadicoTM. It
creates communication channels which comprise every nodes of a cluster.
However, one may want for example to deploy two MPI codes coupled with
CORBA on a cluster. In this case, each MPI code spans across only a group
of nodes, though the low-level communication library spans across all nodes.

To handle such cases, PadicoTM provides the concept of logical groups of
nodes, which we define as a set of nodes. We define a circuit as a NetAccess
communication channel restricted to a group. Thus, higher level communica-
tion libraries such as MPI or a DSM run on a circuit. The logical topology
does not have to match the hardware topology. This is different from creating
MPI groups inside the MPI communicator: the group is handled by Padi-
coTM, thus the middleware library is loaded only on the required nodes, and
the other nodes may load any other middleware (eg. a DSM).

To manage modules on groups, we provide an additional driver for Puk called
multi. The multi driver is aimed at running SPMD codes and middleware

10



(eg. MPI, a DSM) on PadicoTM groups. Basically, the multi driver trans-
forms the modules it contains into SPMD modules. For example, when the
user loads a multi module, the driver forwards the request to the nodes of
the group, performs synchronization, gathers and aggregates the return codes.
All Puk operations (load, start, unload) are SPMDized, with appropriate syn-
chronization. For the multi driver, units are modules and the group name is
given through an attribute.

3.7 Remote Control

For dynamically monitoring and managing modules on each node, Padico com-
prises PadicoControl , a set of applications to remotely steer PadicoTM pro-
cesses. Currently, there are two such applications: a GUI, and a command-line
tool for more advanced users. Communications between these tools and Padi-
coTM rely on CORBA or an XML-based RPC (the use of SOAP is being
investigated), thus allowing the design of third-party tools.

A PadicoTM service called gatekeeper, loaded in PadicoTM processes, listens
to incoming requests and handles them (for example, load a module, return the
list of running modules, etc.). It is mostly a remote interface for the TaskMan-
ager (see Section 3.3).

For the moment, we use a single-user security policy. Security is managed
through the use of session keys. When PadicoTM processes are launched, the
same session key is given to the user and to the gatekeeper. All requests to
PadicoControl must contain a session key which matches the one known by
the gatekeeper. If keys do not match, the request is not taken into account.
Thus, only the user who launched the processes is authorized to steer them.

4 Experiments with middleware and runtimes with PadicoTM

The MPI implementation in PadicoTM is derived from MPICH/Madeleine [2]
with very few changes (use Circuit instead of Madeleine and replace the polling
thread with a callback). The CORBA implementation in PadicoTM is based
on OmniORB3 [1] from AT&T. The porting of OmniORB on top of VSock and
Marcel threads is straightforward. We also ported another implementation of
CORBA, namely MICO, to show the ability of PadicoTM to support various
CORBA-based middleware. However, the best performance was obtained us-
ing OmniORB. The Java Virtual Machine module is based on Kaffe [10], on
top of VSock and Marcel.

11



0

50

100

150

200

250

32 1KB 32KB 1 MB

B
a
n
d
w

id
th

 (
M

B
/s

)

Message size (bytes)

CORBA/Myrinet-2000
CORBA/SCI

MPI/Myrinet-2000
MPI/SCI

Java sockets/Myrinet-2000
TCP/Ethernet-100 (reference)

Fig. 4. CORBA and MPI bandwidth on top of PadicoTM

Our benchmark machines are “old” dual-Pentium II 450MHz machines, with
Ethernet-100, SCI and Myrinet-1, and “more recent” dual-Pentium III 1GHz
with Myrinet-2000.

The MPI module in PadicoTM gets the bandwidth shown in Figure 4. The
peak bandwidth is excellent: 240 MB/s on Myrinet-2000 and 75 MB/s on SCI.
The latency is 11 µs on Myrinet-2000 and 23 µs on SCI. This performance is
identical to MPICH/Madeleine [2] from which PadicoTM MPI implementation
is derived; PadicoTM adds no noticeable overhead neither for bandwidth nor
for latency.

The bandwidth of the high-performance CORBA implementation is shown
in Figure 4. The benchmark consists in a remote invocation of a method
which takes an inout parameter of variable size (sequence of long). The peak
bandwidth is 240 MB/s on Myrinet-2000, 89 MB/s on SCI, and 101 MB/s on
Myrinet 1 (not shown in figure). This performance is very good. We reached
more than 96 % of the maximum achievable bandwidth with Madeleine.

On the “old” machines (Pentium II 450, SCI or Myrinet-1), the latency of
CORBA for an empty remote invocation is around 55 µs. It is a good point
when compared to the 160 µs latency of the ORB over TCP/Ethernet-100. On
the “more recent” machines (Pentium III 1GHz, Myrinet-2000), the latency of
CORBA is 20 µs where MPI gets 11 µs.

12



CORBA is as fast as MPI regarding the bandwidth, and slightly slower than
MPI for latency. This latency could be lowered if we used a specific proto-
col (called ESIOP) instead of the all-purpose GIOP protocol in the CORBA
implementation. This performance is very good, though. As far as we know,
OmniORB in PadicoTM is the fastest CORBA implementation.

Padico provides a Java Virtual Machine module based on Kaffe [10]. It has
been modified to use Marcel threads and VSock . Thus, Java sockets can reach
very good performance when a high-speed network is available. Figure 4 shows
the bandwidth of Java sockets over Myrinet-2000.

5 Related Works

From our knowledge, there exists very few research works dealing with the
design of an open integration framework for communication middleware and
runtimes. Most of the works focused on the performance optimization of a
single middleware or runtime. Since high-performance MPI is well known, we
focus here on high-performance CORBA. TAO [12] (the ACE ORB) focuses
on high performance and real-time aspects. Its main concern is predictability.
It may utilize TCP or ATM networks, but it is not targeted to high per-
formance network protocols found on clusters of PCs such as BIP or SISCI.
OmniORB2 had been adapted to ATM and SCI networks. Since the code is
not publicly available, we only report published results. On ATM, there is
a gap of bandwidth between raw bytes and structured data types [16]. The
bandwidth can be as low as 0.75 MB/s for structured types. On SCI, results
are quite good [14] (156 µs, 37.5 MB/s) for messages of raw bytes; figures for
structured types on SCI are not published. CrispORB [9], developed by Fu-
jitsu labs, is targeted to VIA in general and Synfinity-0 networks in particular.
Its latency is noticeably better, up to 25 % than with standard IIOP.

6 Summary and Conclusion

In this paper we have presented an open framework that is able to incorpo-
rate various communication runtimes and middleware. This platform enables
the execution of applications that are based on both distributed and paral-
lel programming paradigms on grid infrastructures, independently from the
underlying networking resources. Such an approach encourages grid program-
mers to use the most suited communication middleware and runtimes for their
applications. Although this platform adds one more layer between the appli-
cations and the networking resources, we showed that the additional overhead
is insignificant. Moreover, we showed that middleware, such as CORBA, for

13



distributed computing can take benefit from high-performance network. We
also showed that CORBA can achieve roughly the same level of performance
than MPI sweeping away prejudice concerning the performance of such a mid-
dleware.

PadicoTM has been implemented and is distributed as free software. Check
out the Padico web site at http://www.irisa.fr/paris/Padico/ for more
information and to download the software and its documentation.

Acknowledgements

We would like to thank the PM2 developers team (http://www.pm2.org/)
for their efficient support of Madeleine and Marcel.

References

[1] AT&T Laboratories Cambridge. OmniORB Home Page.
http://www.omniorb.org.

[2] O. Aumage, G. Mercier, and R. Namyst. MPICH/Madeleine: a true multi-
protocol MPI for high-performance networks. In Proc. 15th International
Parallel and Distributed Processing Symposium (IPDPS 2001), page 51,
San Francisco, April 2001. IEEE.

[3] Olivier Aumage, Luc Bougé, Alexandre Denis, Jean-François Méhaut,
Guillaume Mercier, Raymond Namyst, and Loïc Prylli. A portable and
efficient communication library for high-performance cluster computing.
In IEEE Intl Conf. on Cluster Computing (CLUSTER 2000), pages 78–
87, Technische Universität Chemnitz, Saxony, Germany, November 2000.

[4] L. Bougé, J.-F. Méhaut, and R. Namyst. Efficient communications in
multithreaded runtime systems. In Parallel and Distributed Processing.
Proc. 3rd Workshop on Runtime Systems for Parallel Programming (RT-
SPP ’99), volume 1586 of Lect. Notes in Comp. Science, pages 468–482,
San Juan, Puerto Rico, April 1999. In conj. with IPPS/SPDP 1999. IEEE
TCPP and ACM SIGARCH, Springer-Verlag.

[5] V. Danjean, R. Namyst, and R. Russell. Integrating kernel activations
in a multithreaded runtime system on Linux. In Parallel and Distributed
Processing. Proc. 4th Workshop on Runtime Systems for Parallel Pro-
gramming (RTSPP ’00), volume 1800 of Lect. Notes in Comp. Science,
pages 1160–1167, Cancun, Mexico, May 2000. In conjunction with IPDPS
2000. IEEE TCPP and ACM, Springer-Verlag.

[6] A. Denis, C. Pérez, and T. Priol. Portable parallel CORBA objects: an
approach to combine parallel and distributed programming for grid com-

14



puting. In Proc. of the Intl. Euro-Par’01 conf., pages 835–844, Manch-
ester, UK, 2001. Springer.

[7] Message Passing Interface Forum. MPI: A message-passing interface stan-
dard. Technical Report UT-CS-94-230, 1994.

[8] Ian Foster, Jonathan Geisler, William Gropp, Nicholas Karonis, Ewing
Lusk, George Thiruvathukal, and Steven Tuecke. Wide-area implemen-
tation of the Message Passing Interface. Parallel Computing, 24(12–
13):1735–1749, November 1998.

[9] Yuji Imai, Toshiaki Saeki, Tooru Ishizaki, and Mitsushiro Kishimoto.
CrispORB: High performance CORBA for system area network. In Pro-
ceedings of the Eighth IEEE International Symposium on High Perfor-
mance Distributed Computing, pages 11–18, 1999.

[10] Kaffe: an OpenSource implementation of a Java Virtual Machine.
http://www.kaffe.org.

[11] P. Keleher, D. Dwarkadas, A. Cox, and W. Zwaenepoel. Treadmarks:
Distributed shared memory on standard workstations and operating sys-
tems. In Proceedings of the 1994 Winter Usenix Conference, pages 115–
131, January 1994.

[12] F. Kuhns, D. Schmidt, and D. Levine. The design and performance of
a real-time I/O subsystem. In Proceedings of the 5th IEEE Real-Time
Technology and Applicati ons Symposium (RTAS99), Vancouver, Canada,
June 1999.

[13] Kai Li and Paul Hudak. Memory coherence in shared virtual memory sys-
tems. Proceedings of the 1986 5th Annual ACM Symposium on Principles
of Distributed Computing, pages 229–239, 1986.

[14] Sai-Lai Lo and S. Pope. The implementation of a high performance ORB
over multiple network transports. Technical report, Olivetti & Oracle
Laboratory, Cambridge, March 1998.

[15] Object Management Group. The Common Object Request Broker: Ar-
chitecture and Specification (Revision 2.2), February 1998.

[16] S. Pope and Sai-Lai Lo. The implementation of a native ATM trans-
port for a high performance ORB. Technical report, Olivetti & Oracle
Laboratory, Cambridge, June 1998.

[17] L. Prylli and B. Tourancheau. Bip: a new protocol designed for high per-
formance networking on myrinet. In 1st Workshop on Personal Computer
based Networks Of Workstations (PC-NOW ’98), Lect. Notes in Comp.
Science, pages 472–485. Springer-Verlag, apr 1998. In conjunction with
IPPS/SPDP 1998.

[18] C. René and T. Priol. MPI code encapsulating using parallel CORBA
object. In Proceedings of the Eighth IEEE International Symposium on
High Performance Distributed Computing, pages 3–10, August 1999.

[19] Steven H. Rodrigues, Thomas E. Anderson, and David E. Culler. High-
performance local area communication with fast sockets. In USENIX ’97,
pages 257–274, January 1997.

[20] V. S. Sunderam. PVM: a framework for parallel distributed computing.

15



Concurrency, Practice and Experience, 2(4):315–340, 1990.

16


