Avalon working group Lyon, April 29th

A Reconfigurable Component Model for HPC

<u>Vincent Lanore¹</u>, Christian Pérez²

¹ : ENS de Lyon, ² : Inria LIP laboratory, Avalon Team France

A Reconfigurable Component Model for HPC

Montréal

High-Performance Computing

Goal: run the biggest possible applications

- eg, large simulations
- months/years of sequential computing time

using cutting edge hardware

very parallel

2

Challenge: scalability

years of sequential computing time source: master omp, Paris13

Tianhe-2 3,120,000 cores source: top500.org

A scientific mesh-based simulation

source: NTUA, school of mechanical engineering

A Reconfigurable Component Model for HPC

HPC Component Models

Examples: CCA, L2C

A jacobi solver assembly on 4 processes

CBSE'15

MPI = Message Passing Interface

Problem: Dynamic HPC Applications

Applications with...

- dynamic communication topology
- dynamic data structure

Not supported by HPC component models

reconfiguration needed

Examples

Δ

- Adaptive Mesh Refinement (AMR)
- dynamic load balancing

AMR mesh, varying resolution

Goal of this talk: HPC reconfigurable component model

Plan of the Talk

Context and related works

- Related work
- Our proposition

Presentation of the model, DirectMOD

- Assembly model
- Programming model

Implementation and evaluation

- Ring example
- DirectL2C

5

Code and performance

Conclusions and perspectives

From the literature:

	Examples	Locking and representation	Scalable?	Reconf SE properties
No reconfiguration support	CCA, L2C	none	up to the user	poor
Global reconfiguration	global MAPE	global	no	good
Composite-level controllers	Fractal, SOFA	composite-level	sometimes	sometimes

Important parameters

- locking granularity
 - scalability
- representation granularity
 - ease of use

No model provides both

- scalable approach
- good SE properties for reconfigurable assemblies
 - reuse
 - separation of concerns

Our proposal: main ideas

Let users define locking units

■ custom granularity / distribution → performance

	Locking and representation	Scalable?	Reconf SE properties
Domain-based	user-defined (domains)	yes	???

To improve SE properties

8

separate locking from representation and transformation

	Locking and representation	Scalable?	Reconf SE properties
Domain-based + separation lock/transfo	user-defined + separated	yes	good

CBSE'15

A Formal Model

DirectMOD : formal model

- full syntax
- transformation semantics

In addition :

- resource model (see paper)
- call stack operational semantics (see paper)

Benefits

- unambiguous specification
- tech-agnostic
- runtime representation

CBSE'15

DirectMOD Assembly Model

10 A Reconfigurable Component Model for HPC

Montréal

Elements

DirectMOD Domains

New element: domains

- manage a subassembly
- unit of locking
 - unit of internal representation
 - reconfigure their contents

CBSE'15

DirectMOD Domains

New element: domains

- manage a subassembly
- unit of locking
 - unit of internal representation
 - reconfigure their contents

CBSE'15

DirectMOD Transformations

A Reconfigurable Component Model for HPC 13

DirectMOD Transformation Adapters

special kind of port

reference to transformation and application subassembly

CBSE'15

DirectMOD Programming Model

Montréal

A C++/MPI Implementation

DirectL2C

- DirectMOD implementation
- extension of L2C
- uses traditional HPC tech
 - C++
 - MPI (Message Passing Interface)
 - threads

Provides

- remote basic reconfiguration operations
- transformation parsing and execution
- helper classes for locking
- interface and locking APIs

	Components	Files	mLOC
L2C	37	79	4570
DirectL2C	3	10	1118

CBSE'15

DirectL2C in Practice

Montréal

Evaluation: Easy to Write?

Implemented: ring assembly

- insert new component
- remove component

Preliminary implementation

- not yet fully optimized
- shortest possible code

Ring assembly LOC

Function	C++ LOC
Transformation	8
Non-functional sync	20
Code instrumentation	13
L2C overhead	7
DirectL2C overhead	6
Functional code	31
Other	3
TOTAL	88

- short and easy transformation code
- large and difficult synchronization code

Montréal

Evaluation: scalable?

Testing our ring assembly

- one component per core at startup
- fixed number of *insert* and *remove* transformations per starting component
- one domain per component (fully distributed)

Preliminary experiments on Grid'5000

 acceptable scalability up to 128 cores

Montréal

Conclusion and Perspectives

Presented DirectMOD

- a reconfigurable component model
- formal
- +implementation (DirectL2C)
- preliminary evaluation
 - short and easy to write code
 - scalability up to 128 cores

Perspectives

- improve evaluation
 - ongoing work on a complex benchmark
 - experiments on large platform (eg, Curie)
- ease domain development
 - ongoing work on automating certain locking patterns
- transformation specification
 - genericity
 - compact language

Montréal