Detecting Silent Data Corruption Using an Auxiliary Method And External Observer

Hadrien Croubois

École Normale Supérieure de Lyon, France

Introd	uction

Introduction

Silent data corruption (SDC) is corruption of the memory which:

- Is not detected by hardware level fault tolerance mechanisms,
- Does not cause major disruption of the systems' execution,
- Does not cause major disruption of the applications' execution.

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
••••			
What is silent data	corruption ?		

Silent data corruption (SDC) is corruption of the

memory which

Issue

The risk is that those errors might stay unnoticed and threaten the results' validity.

• Does not cause major disruption of the applications' execution.

There are two sorts of SDC:

Systematic SDC

SDC that are expected to affect all executions of the application in a similar way (ex: bugs) Nonsystematic SDC

SDC happening randomly

(ex: radiation induced bitflips)

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
0000			
State of the art			

Process replication

Figure 1: Simple pipeline replication

Introduction ○○●○	A new detection mechanism	Bootstrapping the prediction model	Conclusion
State of the art			
	- Parata		

Process replication

Replication

Limitation

- Difficult when considering nondeterministic algorithms,
- Cannot detect systematic errors,
- Expensive.

Figure 1: Simple pipeline replication

0000 0000000 000		
	00000000	0000
State of the art		

Predictive detection

6/32

Di & al. An Efficient Silent Data Corruption Detection Method with Error-Feedback

Control and Even Sampling for HPC Applications. 2015.

Predictive detection

Figure 2: Predictive detection

Di & al. An Efficient Silent Data Corruption Detection Method with Error-Feedback

Control and Even Sampling for HPC Applications. 2015.

Introduction	

Our objective is to provide a new SDC detection mechanism:

- With low overhead,
- Capable of detecting both systematic & nonsystematic SDC,
- Applicable to acyclic pipelines (no temporal dimension),
- Deployed at the workflow level.

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
	0000000		
Multialgorithms replie	cation pipeline		

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
	0000000		
Multialgorithms repl	ication pipeline		

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
	0000000		
Multialgorithms replic	ation pipeline		

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
	0000000		
Multialgorithms replic	ation pipeline		

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
	0000000		
Multialgorithms replic	ation pipeline		

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
	0000000		
Multialgorithms replic	ation pipeline		

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
	0000000		
Multialgorithms replic	ation pipeline		

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion	
	00000000			
Multialgorithms replication pipeline				

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion	
	0000000			
Multialgorithms replication pipeline				

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
	00000000		
First usecase -	Nonsystematic error detection		

Applying this model to a use case :

Ptychography reconstruction

Introduction 0000	A new detection mechanism	Bootstrapping the prediction model	Conclusion		
First usecase - Nonsystematic error detection					

What is Ptychography ?

Figure 4: Simplified ptychography setup

Nashed & al. Parallel ptychographic reconstruction 2014

Detecting Silent Data Corruption Using an Auxiliary Method

Reconstruction injects artifacts that have to be removed :

Phase shift correction,

Phase gradient correction.

Reconstruction injects artifacts that have to be removed :

Phase shift correction,

Limitation

Once those artifacts are removed, the distance is a simple RMS measurement of the pixel-wise difference.

Phase gradient correction.

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
First usecase - N	onsystematic error detection		
Experime	ental protocol		

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
First usecase - N	onsystematic error detection		
Experime	ental protocol		

Generating simulated diffraction patterns,

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
First usecase - N	Nonsystematic error detection		
Experim	ental protocol		

- Generating simulated diffraction patterns,
- 2 (Inserting corruption in the diffraction patterns),

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
First usecase - N	Nonsystematic error detection		
Experim	ental protocol		

- Generating simulated diffraction patterns,
- 2 (Inserting corruption in the diffraction patterns),
- Seconstructing the transmission characteristics,

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
First usecase -	Nonsystematic error detection		
Experim	ental protocol		

- Generating simulated diffraction patterns,
- 2 (Inserting corruption in the diffraction patterns),
- Seconstructing the transmission characteristics,
- Comparing the results (distance evaluation),

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
First usecase -	Nonsystematic error detection		
Experim	ental protocol		

- Generating simulated diffraction patterns,
- 2 (Inserting corruption in the diffraction patterns),
- Seconstructing the transmission characteristics,
- Comparing the results (distance evaluation),
- Validating the measured distance.

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
First usecase -	Nonsystematic error detection		
Experim	ental protocol		

- Generating simulated diffraction patterns,
- 2 (Inserting corruption in the diffraction patterns),
- 8 Reconstructing the transmission characteristics,
- Comparing the results (distance evaluation),
- Solution Validating the measured distance.

We also will be evaluating the trade-off between sensitivity and cost when changing the number of observed diffraction patterns.

Figure 5: Acceptance rate depending on the position of injected errors

Figure 6: Acceptance rate depending on the position of injected errors with reduced complexity auxiliary methods

Introduction A new detection mechanism 00000000

First usecase - Nonsystematic error detection

Results 3/3

Auxiliary algorithm's	False positive	Detection rate
scan dimension	(<i>fp</i>)	(<i>d</i>)
4 × 4	10.00%	8.82%
8 × 8	0.00%	9.28%
32×32	0.00%	9.53%

Table 1: False positive and detection rates for our ptychography replicated pipeline validating corrupted reconstruction results.

fp = *rejection*(no errors)

$$d = \frac{1}{32} \sum_{b \in [0,31]} \frac{rejection(b) - fp}{1 - fp}$$

Conclusion

Bootstrapping the prediction model

Bootstrapping the prediction model

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion	
0000	000000000	000000000	0000	
Why we need bootstrapping ?				

Detection is made possible by the prediction model.

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
Why we need bootstra	opping ?		

Detection is made possible by the prediction model.

Prediction model is built through training.

Introduction	A new detection mechanism	Bootstrapping the prediction m
		●00000000
Why we need boot	strapping ?	

odel

Detection is made possible by the prediction model.

Prediction model is built through training.

How to handle SDC during this training phase ?

Why we need	bootstrapping ?
Introduction	A new detection mechanism

Detection is made possible by the prediction model.

Challenge

We need a way build a trustworthy prediction model.

How to handle SDC during this training phase ?

Introduction	A new detection mechanism	Bootstrapping the prediction model
		00000000
The bootstrappin	g pipeline	

Involved algorithms:

Figure 7: Bootstrapping a prediction model for systematic SDC detection

Bootstrapping the prediction model

Conclusion

The bootstrapping pipeline

Involved algorithms:

- α Expensive reference (truth),
- β Previously used algorithm (balanced),

Figure 7: Bootstrapping a prediction model for systematic SDC detection

Bootstrapping the prediction model

Conclusion

The bootstrapping pipeline

Involved algorithms:

- α Expensive reference (truth),
- β Previously used algorithm (balanced),

Figure 7: Bootstrapping a prediction model for systematic SDC detection

Bootstrapping the prediction model

Conclusion

The bootstrapping pipeline

Involved algorithms: α Expensive reference (truth),

 β Previously used algorithm (balanced),

Figure 7: Bootstrapping a prediction model for systematic SDC detection

Bootstrapping the prediction model

Conclusion

The bootstrapping pipeline

Involved algorithms: α Expensive reference (truth),

- β Previously used algorithm (balanced),
- χ New algorithm (to be proven better then β),

Figure 7: Bootstrapping a prediction model for systematic SDC detection

Bootstrapping the prediction model

Conclusion

The bootstrapping pipeline

- β Previously used algorithm (balanced),
- χ New algorithm (to be proven better then β),

Figure 7: Bootstrapping a prediction model for systematic SDC detection

Bootstrapping the prediction model

Conclusion

The bootstrapping pipeline

Involved algorithms: α Expensive reference (truth),

- β Previously used algorithm (balanced),
- χ New algorithm (to be proven better then β),
 - δ Auxiliary algorithm for the production pipeline.

Figure 7: Bootstrapping a prediction model for systematic SDC detection

Bootstrapping the prediction model

Conclusion

The bootstrapping pipeline

Involved algorithms: α Expensive reference (truth),

- β Previously used algorithm (balanced),
- χ New algorithm (to be proven better then β),
 - δ Auxiliary algorithm for the production pipeline.

Figure 7: Bootstrapping a prediction model for systematic SDC detection

Bootstrapping the prediction model

Conclusion

The bootstrapping pipeline

Involved algorithms: α Expensive reference (truth),

- β Previously used algorithm (balanced),
- χ New algorithm (to be proven better then β),
 - δ Auxiliary algorithm for the production pipeline.

Figure 7: Bootstrapping a prediction model for systematic SDC detection

Bootstrapping the prediction model

Conclusion

The bootstrapping pipeline

Involved algorithms: α Expensive reference (truth),

- β Previously used algorithm (balanced),
- χ New algorithm (to be proven better then β),
 - δ Auxiliary algorithm for the production pipeline.

Figure 7: Bootstrapping a prediction model for systematic SDC detection

Bootstrapping the prediction model

Conclusion

The bootstrapping pipeline

Involved algorithms: α Expensive

- reference (truth),
- β Previously used algorithm (balanced),
- χ New algorithm (to be proven better then β),
 - δ Auxiliary algorithm for the production pipeline.

Figure 7: Bootstrapping a prediction model for systematic SDC detection

Bootstrapping the prediction model

Conclusion

The bootstrapping pipeline

Involved algorithms: α Expensive

- reference (truth),
- β Previously used algorithm (balanced),
- χ New algorithm (to be proven better then β),
 - δ Auxiliary algorithm for the production pipeline.

Figure 7: Bootstrapping a prediction model for systematic SDC detection

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
0000	00000000	00000000	0000
Second usecase -	Systematic error detection		

Applying this model to an HPC use case :

Density estimation

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
		000000000	
Second usecase - Systematic error detection			

Density estimation

Figure 8: From a set of particles to a density field: visualisation of dark matter distribution in the early universe

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
0000	00000000	00000000	0000
Second usecase - Sys	tematic error detection		

Algorithms description

Figure 9: Weight distribution mechanisms of different density estimators

Peterka & al. Self-adaptive density estimation of particle data 2015

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion
		000000000	
Second usecase -	Systematic error detection		
Natural r	resiliency		

Those algorithms are naturally resilient to noise in the input data.

Figure 10: Impact of random bitflips on a 200k particles distribution 1000 = 0.005%, 10000 = 0.05%, 100000 = 0.5%

To reflect the structure of produced density fields, we build a custom metric based on the radial powerspectrum.

24 / 32

Hadrien Croubois Detecting Silent Data Corruption Using an Auxiliary Method

To reflect the structure of produced density fields, we build a custom metric based on the radial powerspectrum.

Introduction	A new detection mechanism
c 1	

Bootstrapping the prediction model

Conclusion

Second usecase - Systematic error detection

Experimental protocol 1/2

Figure 12: Deploying the bootstrapping pipeline for systematic SDC detection

Introduction 0000	A new detection mechanism	Bootstrapping the prediction model ○○○○○○○●○	Conclusion
Second usecase - S	systematic error detection		

Experimental protocol 2/2

Figure 13: Density field computed by different density estimators. Top: SPH, AKDE, Tess-Dense. Bottom: Tess-Dense with communication error, Tess- Dense with grid error, Tess-Dense with projection error

Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion	
		000000000		
Second usecase - Systematic error detection				

Results

Build	Bug type	Acceptance rate
Clean	None	100.00%
Communication error	Systematic	3.75%
Grid error	Systematic	0.00%
Projection error	Systematic	8.75%
Projection datarace	Probabilistic	58.75%

Table 2: Acceptance rates of the bootstrapping process for different versions of Tess-Dense

Introd	uction

Conclusion

Introduction 0000	A new detection mechanism	Bootstrapping the prediction model	Conclusion ●○○○
Discussion			
Capabilit	ies		

- Fully generic replication mechanism,
- Provide protection against both systematic and nonsystematic SDC,
- Low overhead in the production pipeline,
- Validation based on results meaningfulness ratter then exact matching,
- Users can specify the characteristic of the results they are interested in.

Introduction 0000	A new detection mechanism	Bootstrapping the prediction model	Conclusion ○●○○
Discussion			
Limitation	`		

- Requires an (affordable) auxiliary algorithm,
- Relies on machine learning,
- Provides detection but no correction.

Introduction 0000	A new detection mechanism	Bootstrapping the prediction model	Conclusion ○○●○
Conclusion			
Future W	/ork		

- Comparative study of machine learning processes,
- Implementation as generic model in Decaf.

Conclusion			
0000	00000000	000000000	0000
Introduction	A new detection mechanism	Bootstrapping the prediction model	Conclusion

Thank you for your attention.

Any questions ?

