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What is silent data corruption ?

Silent data corruption (SDC) is corruption of the

memory which:

Is not detected by hardware level fault tolerance mechanisms,

Does not cause major disruption of the systems’ execution,

Does not cause major disruption of the applications’ execution.
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What is silent data corruption ?

Silent data corruption (SDC) is corruption of the

memory which:

Is not detected by hardware level fault tolerance mechanisms,

Does not cause major disruption of the systems’ execution,

Does not cause major disruption of the applications’ execution.

Issue

The risk is that those errors might stay unnoticed and threaten the
results’ validity.
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What is silent data corruption ?

There are two sorts of SDC:

Systematic SDC Nonsystematic SDC

SDC that are expected to SDC happening randomly

affect all executions of the

application in a similar way

(ex: bugs) (ex: radiation induced bitflips)
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State of the art
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Figure 1: Simple pipeline replication
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Figure 1: Simple pipeline replication

Limitation

Difficult when considering nondeterministic algorithms,

Cannot detect systematic errors,

Expensive.
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State of the art
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Figure 2: Predictive detection

Di & al. An Efficient Silent Data Corruption Detection Method with Error-Feedback

Control and Even Sampling for HPC Applications. 2015.
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Figure 2: Predictive detection

Di & al. An Efficient Silent Data Corruption Detection Method with Error-Feedback

Control and Even Sampling for HPC Applications. 2015.

Limitation

Cannot detect systematic errors,

Needs to select one dimension as the stepping domain.
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A new detection mechanism
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Objectives

Our objective is to provide a new SDC detection

mechanism:

With low overhead,

Capable of detecting both systematic & nonsystematic SDC,

Applicable to acyclic pipelines (no temporal dimension),

Deployed at the workflow level.
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Figure 3: Variable replication with external observer
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First usecase - Nonsystematic error detection

Applying this model to a use case :

Ptychography reconstruction
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First usecase - Nonsystematic error detection

What is Ptychography ?

Sample

Optic or 

Pinhole
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Diffraction Pattern
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Direction
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Figure 4: Simplified ptychography setup

Nashed & al. Parallel ptychographic reconstruction 2014
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First usecase - Nonsystematic error detection

Building a metric

Reconstruction injects artifacts that have to be removed :
1 Phase shift correction,
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2 Phase gradient correction.
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2 Phase gradient correction.

Limitation

Once those artifacts are removed, the distance is a simple RMS
measurement of the pixel-wise difference.
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First usecase - Nonsystematic error detection

Experimental protocol

For testing the detection capability we deploy a full pipeline
with purposely injected SDC :
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First usecase - Nonsystematic error detection

Experimental protocol

For testing the detection capability we deploy a full pipeline
with purposely injected SDC :

1 Generating simulated diffraction patterns,

2 (Inserting corruption in the diffraction patterns),

3 Reconstructing the transmission characteristics,

4 Comparing the results (distance evaluation),

5 Validating the measured distance.

We also will be evaluating the trade-off between sensitivity and cost
when changing the number of observed diffraction patterns.
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First usecase - Nonsystematic error detection

Results 1/3
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Figure 5: Acceptance rate depending on the position of injected errors
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First usecase - Nonsystematic error detection

Results 2/3
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Figure 6: Acceptance rate
depending on the position of
injected errors with reduced
complexity auxiliary methods
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First usecase - Nonsystematic error detection

Results 3/3

Auxiliary algorithm’s False positive Detection rate
scan dimension (fp) (d)

4 × 4 10.00% 8.82%
8 × 8 0.00% 9.28%

32 × 32 0.00% 9.53%

Table 1: False positive
and detection rates
for our ptychography
replicated pipeline
validating corrupted
reconstruction results.

fp = rejection(no errors) d = 1

32
∑

b∈[0,31]

rejection(b) − fp
1 − fp
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Bootstrapping the prediction

model
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Why we need bootstrapping ?

Detection is made possible by the prediction model.
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Why we need bootstrapping ?

Detection is made possible by the prediction model.

Prediction model is built through training.

How to handle SDC during this training phase ?
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Why we need bootstrapping ?

Detection is made possible by the prediction model.

Prediction model is built through training.

How to handle SDC during this training phase ?

Challenge

We need a way build a trustworthy prediction model.
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The bootstrapping pipeline
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Figure 7: Bootstrapping a prediction model for systematic SDC detection
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Second usecase - Systematic error detection

Applying this model to an HPC use case :

Density estimation
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Second usecase - Systematic error detection

Density estimation
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Figure 8: From a set of particles to a density field: visualisation of dark
matter distribution in the early universe
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Second usecase - Systematic error detection

Algorithms description

CIC TESSSPHAKDE

O(p + r3) O(p log p + r3) O(t.p log p + r3) O(p2 + r3)
Figure 9: Weight distribution mechanisms of different density estimators

Peterka & al. Self-adaptive density estimation of particle data 2015
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Second usecase - Systematic error detection

Natural resiliency

Those algorithms are naturally resilient to noise in the input data.
no errors 1000 errors 10000 errors

100000 errors 200000 errors 500000 errors

100

101

102

103

104

105

106

107

Figure 10: Impact of random bitflips on a 200k particles distribution.
1000 = 0.005%, 10000 = 0.05%, 100000 = 0.5%
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Second usecase - Systematic error detection

Custom metric

To reflect the structure of produced density fields, we build a
custom metric based on the radial powerspectrum.
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Experimental protocol 1/2
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Experimental protocol 2/2
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Figure 13: Density field computed by different density estimators. Top:
SPH, AKDE, Tess-Dense. Bottom: Tess-Dense with communication
error, Tess- Dense with grid error, Tess-Dense with projection error
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Second usecase - Systematic error detection

Results

Build Bug type Acceptance rate

Clean None 100.00%
Communication error Systematic 3.75%

Grid error Systematic 0.00%
Projection error Systematic 8.75%

Projection datarace Probabilistic 58.75%

Table 2: Acceptance rates of the bootstrapping process for different
versions of Tess-Dense
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Discussion

Capabilities

Fully generic replication mechanism,

Provide protection against both systematic and
nonsystematic SDC,

Low overhead in the production pipeline,

Validation based on results meaningfulness ratter then
exact matching,

Users can specify the characteristic of the results they are
interested in.
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Limitation

Requires an (affordable) auxiliary algorithm,

Relies on machine learning,

Provides detection but no correction.
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Future Work

Comparative study of machine learning processes,

Implementation as generic model in Decaf.
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Thank you for your attention.

Any questions ?
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